Skip to main content
Log in

Contribution and Stability of Yield Components of Diploid Hybrid Potato

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

Recently, a hybrid breeding system was developed for diploid potato. We compared performance of diploid hybrids with commercially available tetraploid cultivars. Therefore, seedling tubers were produced from true hybrid seeds in field conditions. In the subsequent year, diploid hybrids grown from seedling tubers showed a yield potential comparable with commercial tetraploid cultivars: the highest yielding diploid hybrids showed a yield comparable with the lower yielding tetraploid cultivars. Yields of hybrids and commercial tetraploid cultivars were broken down into different yield components and the interactions with growing conditions were quantified. The stability of yield and other relevant traits in different growing conditions was similar between hybrids and commercial cultivars. The contribution of the different yield components to total yield over different environments was compared between diploid hybrids and tetraploid cultivars. In diploid hybrids as well as tetraploid cultivars, more tubers per stem resulted in the highest yield gain, while an increase in tuber size resulted in a relatively smaller increase of total yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arsenault WJ, LeBlanc DA, Tai GCC, Boswall P (2001) Effects of nitrogen application and seedpiece spacing on yield and tuber size distribution in eight potato cultivars. Am J Potato Res 78(4):301–309

    Google Scholar 

  • Asghari-Zakaria D, Fathi M, Hasan-Panah D (2007) Sequential Path Analysis of Yield Components in Potato. Potato Res. 49(4):273–279

    Google Scholar 

  • Bani-Aameur F, Lauer FI, Veilleux RE, Hilali A (1991) Genomic Composition of 4x–2x Potato Hybrids: Influence of Solanum Chacoense. Genome 34(3):413–420

    Google Scholar 

  • Bisognin DA, Rigão MA, Lopes SJ, Storck L (2012) Heritability and Correlation among Potato Tuber Traits. Crop Breed. Appl. Biotechnol. 12(3):215–219

    Google Scholar 

  • Buso JA, Boiteux LS, Peloquin SJ (1999) Multitrait Selection System Using Populations with a Small Number of Interploid (4x-2x) Hybrid Seedlings in Potato: Degree of High-Parent Heterosis for Yield and Frequency of Clones Combining Quantitative Agronomic Traits. Theor Appl Genet 99(1–2):81–91

    Google Scholar 

  • Crossa J (1990) Statistical analysis of multilocation trials. Adv. Agron. 44:55–85

    Google Scholar 

  • Douches DS, Maas D, Jastrzebski K, Chase RW (1996) Assessment of potato breeding progress in the USA over the last century. Crop Sci 26(6):1544–1552

    Google Scholar 

  • Endelman JB, Jansky SH (2016) Genetic Mapping with an Inbred Line-Derived F2 Population in Potato. Theor Appl Genet 129(5):935–943

    CAS  PubMed  Google Scholar 

  • Firman DM, Allen EJ (2007) Potato Biology and Biotechnology: Advances and Perspectives. Chapter 33: Agronomic practices. Elsevier, Amsterdam. 719–38

  • Gauch H, Piepho H, Annicchiarico P (2008) Statistical Analysis of Yield Trials by AMMI and GGE: Further Considerations. Crop Sci 48. https://doi.org/10.2135/cropsci2007.09.0513

  • Gauch HG, Zobel R (1997) Identifying mega-environment and targeting genotypes. Crop Sci 37:381–385

    Google Scholar 

  • Jong H, Tai GCC (1991) Evaluation of Potato Hybrids Obtained from Tetraploid-Diploid Crosses I. Parent-Offspring Relationships. Plant Breeding 107(3):177–182

    Google Scholar 

  • Haverkort AJ (1990) Ecology of Potato Cropping Systems in Relation to Latitude and Altitude. Agr. Syst. 32(3):251–272

    Google Scholar 

  • Haverkort AJ, Struik PC (2015) Yield Levels of Potato Crops: Recent Achievements and Future Prospects. Field Crop. Res. 182:76–85

    Google Scholar 

  • Haverkort AJ, van de Waart M, Bodlaender KBA (1990) Interrelationships of the Number of Initial Sprouts, Stems, Stolons and Tubers per Potato Plant. Potato Res 33(2):269–274

    Google Scholar 

  • Hosaka K, Hanneman RE (1998) Genetics of self-compatibility in a self-compatible wild diploid potato species Solanum chacoense. 2. Localization of an S- locus inhibitor (Sli) gene on the potato genome using DNA markers. Euphytica 103:265–271

  • Hutten RCB (1994) Basic Aspects of Potato Breeding via the Diploid Level. Wageningen

  • Jansky SH, Charkowski AO, Douches DS, Gusmini G, Richael C, Bethke PC, Spooner DM, Novy RG, De Jong H, De Jong WS, Bamberg JB, Tomphson AL, Bizimungu B, Holm DG, Brown CR, Haynes KG, Sathuvalli VR, Veilleux RE, Miller C, Bradeen JM, Jiang J (2016) Reinventing Potato as a Diploid Inbred Line-Based Crop. Crop Sci 56(4):1412–1422

    CAS  Google Scholar 

  • Jeuken MJW, Lindhout P (2004) The Development of Lettuce Backcross Inbred Lines (BILs) for Exploitation of the Lactuca Saligna (Wild Lettuce) Germplasm. Theor Appl Genet 109(2):394–401

    CAS  PubMed  Google Scholar 

  • Kooman PL, Fahem M, Tegera P, Haverkort AJ (1996) Effects of Climate on Different Potato Genotypes 2. Dry Matter Allocation and Duration of the Growth Cycle. Eur J Agron 5(3–4):207–217

    Google Scholar 

  • Lin CS, Binns MR, Lefkovitch LP (1986) Stability Analysis: Where Do We Stand? Crop Sci 26:894–900

    Google Scholar 

  • Lindhout P, de Vries M, ter Maat M, Su Y, Viquez-Zamora M, van Heusden S (2018) Hybrid Potato Breeding for Improved Varieties. Achieving Sustainable Cultivation of Potatoes 1(1):1–24

    Google Scholar 

  • Lindhout P, Meijer D, Schotte T, Hutten RCB, Visser RGF, van Eck HJ (2011) Towards F 1 Hybrid Seed Potato Breeding. Potato Res 54(4):301–312

    Google Scholar 

  • Lindqvist-Kreuze H, Khan A, Salas E, Meiyalaghan S, Thomson S, Gomez R, Bonierbale M (2015) Tuber Shape and Eye Depth Variation in a Diploid Family of Andean Potatoes. BMC Geneti 16(1):1–10

    Google Scholar 

  • Love SL, Werner BK, Pavek JJ (1997) Selection for Individual Traits in the Early Generations of a Potato Breeding Program Dedicated to Producing Cultivars with Tubers Having Long Shape and Russet Skin. Am Potato J 74(3):199–213

    Google Scholar 

  • Lynch DR, Foroud N, Kozub GC, Fames BC (1995) The Effect of Moisture Stress at Three Growth Stages on the Yield, Components of Yield and Processing Quality of Eight Potato Varieties. Am Potato J 72:375–385

    Google Scholar 

  • Meijer D, Viquez-Zamora M, van Eck HJ, Hutten RCB, Su Y, Rothengatter R, Visser RGF, Lindhout WH, van Heusden AW (2018) QTL Mapping in Diploid Potato by Using Selfed Progenies of the Cross S. Tuberosum × S. Chacoense. Euphytica 214(7):121

    CAS  PubMed  PubMed Central  Google Scholar 

  • NAK (2018) Inspection of seed potatoes; https://www.nak.nl/wp-content/uploads/2018/10/Inspection-of-seed-potatoes-DIS-2018-definitief.pdf

  • Piepho HP, Laidig F, Drobek T, Meyer U (2014) Dissecting Genetic and Non-genetic Sources of Long-term Yield Trend in German Official Variety Trials. Theor Appl Genet 127(5):1009–1018

    PubMed  Google Scholar 

  • Prinzenberg AE, Víquez-Zamora M, Harbinson J, Lindhout P, van Heusden S (2018) Chlorophyll Fluorescence Imaging Reveals Genetic Variation and Loci for a Photosynthetic Trait in Diploid Potato. Physiol Plant 164(2):163–175

    CAS  PubMed  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Rodríguez-Álvarez MX, Boer MP, van Eeuwijk FA, Eilers PHC (2018) Correcting for Spatial Heterogeneity in Plant Breeding Experiments with P-Splines. Spat Stat 23:52–71

    Google Scholar 

  • Struik PC (2007) The Canon of Potato Science: 40. Physiological Age of Seed Tubers. Potato Res 50:375–377

    Google Scholar 

  • Struik PC, Wiersema SG (2001) Seed Potato Technology. Wageningen Academic Publishers, The Netherlands

    Google Scholar 

  • Su Y, Viquez-Zamora M; den Uil D; Sinnige J; Kruyt H; Vossen J; Lindhout P; van Heusden S (2019) Introgression of Genes for Resistance against Phytophthora infestans in Diploid Potato. American Journal of Potato Research

  • Tiemens-Hulscher M, Delleman J, Eising J, Lammerts van Bueren ET (2013) Potato Breeding. Drukkerij De Swart, Den Haag

    Google Scholar 

  • Wang Y, Snodgrass LB, Bethke PC, Bussan AJ, Holm DG, Novy RG, Pavek MJ, Porter GA, Rosen CJ, Sathuvalli V, Thompson AL, Thornton MT, Endelman JB (2017) Reliability of Measurement and Genotype × Environment Interaction for Potato Specific Gravity. Crop Sci 57:1–7

    Google Scholar 

  • Werner JE, Peloquin SJ (1991) Yield and Tuber Characteristics of 4x Progeny from 2x x 2x Crosses. Potato Res 34(3):261–267

    Google Scholar 

  • Yildirim MB, Celal F (1985) Genotype x environment interactions in potato. Am Potato J62(7):371–375

    Google Scholar 

  • Zaheer K, Akhtar MH (2016) Potato Production, Usage, and Nutrition—A Review. Crit Rev Food Sci Nutr 56(5):711–721. https://doi.org/10.1080/10408398.2012.724479

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Stockem.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 38.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stockem, J., de Vries, M., van Nieuwenhuizen, E. et al. Contribution and Stability of Yield Components of Diploid Hybrid Potato. Potato Res. 63, 345–366 (2020). https://doi.org/10.1007/s11540-019-09444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11540-019-09444-x

Keywords

Navigation