Skip to main content
Log in

Development of a Potato Cultivar (Solanum tuberosum L.) Core Collection, a Valuable Tool to Prospect Genetic Variation for Novel Traits

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

This study presents the development of a core collection capturing the genetic diversity of a collection of 350 tetraploid cultivated potato varieties (Solanum tuberosum L.). The core collection was established by using simple sequence repeats (SSR) data and the M strategy, which aims at maximizing the allelic diversity. A 48-core collection was defined which captured 99.5% of the SSR alleles used to establish it, and 96.9% of the SSR alleles which belonged to an independent set of markers. The defined core collection was further validated by analysing 35 agro-morphological traits. The class coverage value and the estimates of the Shannon-Weaver diversity index indicated a good representation of the phenotypic diversity in the core collection. Furthermore, the core set included accessions having the most desirable status for several agronomic traits. A linkage disequilibrium (LD) analysis, using data obtained with the SolCAP SNP array on the defined core collection, was performed. The population structure analysis showed that the core collection did not present a clear genetic structure. The linkage disequilibrium analysis carried out between markers located on the same pseudomolecule within 10,000 bp concluded that 41.3% of these pairs of SNP markers have a significant LD. We conclude that this core collection, representative of the genetic diversity of cultivated potato varieties, is a relevant tool for a first screening for genetic variation regarding novel traits of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achenbach U, Paulo J, Ilarionova E, Lubeck J, Strahwald J, Tacke E, Hofferbert HR, Gebhardt C (2009) Using SNP markers to dissect linkage disequilibrium at a major quantitative trait locus for resistance to the potato cyst nematode Globodera pallida on potato chromosome V. Theor Appl Genet 118:619–629

    Article  CAS  PubMed  Google Scholar 

  • Bamberg J, del Rio A (2014) Selection and validation of an AFLP marker core collection for the wild potato Solanum microdontum. Am J Potato Res 91:368–375

    Article  CAS  Google Scholar 

  • Brown AHD (1989) Core collections—a practical approach to genetic resources management. Genome 31:818–824

    Article  Google Scholar 

  • Chandra S, Huaman Z, Krishna SH, Ortiz R (2002) Optimal sampling strategy and core collection size of Andean tetraploid potato based on isozyme data—a simulation study. Theor Appl Genet 104:1325–1334

    Article  CAS  PubMed  Google Scholar 

  • D’Hoop BB, Paulo MJ, Kowitwanich K, Sengers M, Visser RGF, Van Eck HJ, Van Eeuwijk FA (2010) Population structure and linkage disequilibrium unravelled in tetraploid potato. Theor Appl Genet 121:1151–1170

    Article  PubMed  PubMed Central  Google Scholar 

  • Escribano P, Viruel MA, Hormaza JI (2008) Comparison of different methods to construct a core germplasm collection in woody perennial species with simple sequence repeat markers. A case study in cherimoya (Annona cherimola, Annonaceae), an underutilised subtropical fruit tree species. Ann Appl Biol 153:25–32

    Article  Google Scholar 

  • Esnault F, Solano J, Perretant MR, Herve M, Label A, Pelle R, Dantec JP, Boutet G, Brabant P, Chauvin JE (2014) Genetic diversity analysis of a potato (Solanum tuberosum L.) collection including Chiloe Island landraces and a large panel of worldwide cultivars. Plant Genetic Resources-Characterization and Utilization 12:74–82

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Feingold S, Lloyd J, Norero N, Bonierbale M, Lorenzen J (2005) Mapping and characterization of new EST-derived microsatellites for potato (Solanum tuberosum L.). Theor Appl Genet 111:456–466

    Article  CAS  PubMed  Google Scholar 

  • Felcher KJ, Coombs JJ, Massa AN, Hansey CN, Hamilton JP, Veilleux RE, Buell CR, Douches DS (2012) Integration of two diploid potato linkage maps with the potato genome sequence. PLoS One 7:e36347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco J, Crossa J, Taba S, Shands H (2005) A sampling strategy for conserving genetic diversity when forming core subsets. Crop Sci 45:1035–1044

    Article  Google Scholar 

  • Franco J, Crossa J, Warburton ML, Taba S (2006) Sampling strategies for conserving maize diversity when forming core subsets using genetic markers. Crop Sci 46:854–864

    Article  Google Scholar 

  • Frankel OH, Brown AHD (1984) Plant genetic resources today: a critical appraisal. In: Holden JHW, Williams JT (eds) Crop genetic resources: conservation and evaluation. Georges Allen & Unwin Ltd, London, pp. 249–257

    Google Scholar 

  • Ghislain M, Andrade D, Rodriguez F, Hijmans RJ, Spooner DM (2006) Genetic analysis of the cultivated potato Solanum tuberosum L. Phureja Group using RAPDs and nuclear SSRs. Theor Appl Genet 113:1515–1527

    Article  CAS  PubMed  Google Scholar 

  • Ghislain M, Spooner DM, Rodriguez F, Villamon F, Nunez J, Vasquez C, Waugh R, Bonierbale M (2004) Selection of highly informative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato. Theor Appl Genet 108:881–890

    Article  CAS  PubMed  Google Scholar 

  • Ghislain M, Zhang D, Fajardo D, Huaman Z, Hijmans RJ (1999) Marker-assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers. Genet Resour Crop Evol 46:547–555

    Article  Google Scholar 

  • Gopal J, Kumar V, Kumar R, Mathur P (2013) Comparison of different approaches to establish a core collection of Andigena (Solanum tuberosum Group Andigena) potatoes. Potato Res 56:85–98

    Article  Google Scholar 

  • Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL (2001) MSTRAT: an algorithm for building germ plasm core collections by maximizing allelic or phenotypic richness. J Hered 92:93–94

    Article  CAS  PubMed  Google Scholar 

  • Hirsch CN, Hirsch CD, Felcher K, Coombs J, Zarka D, Van Deynze A, De Jong W, Veilleux RE, Jansky S, Bethke P, Douches DS, Buell CR (2013) Retrospective view of North American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries. G3-genes genomes. Genetics 3:1003–1013

    Google Scholar 

  • Huaman Z, Ortiz R, Gomez R (2000) Selecting a Solanum tuberosum subsp andigena core collection using morphological, geographical disease and pest descriptors. Am J Potato Res 77:183–190

    Article  Google Scholar 

  • Juyo D, Sarmiento F, Alvarez M, Brochero H, Gebhardt C, Mosquera T (2015) Genetic diversity and population structure in diploid potatoes of Solanum tuberosum Group Phureja. Crop Sci 55:760–769

    Article  Google Scholar 

  • Kawchuk LM, Lynch DR, Thomas J, Penner B, Sillito D, Kulcsar F (1996) Characterization of Solanum tuberosum simple sequence repeats and application to potato cultivar identification. American Potato Journal 73:325–335

    Article  CAS  Google Scholar 

  • Kim KW, Chung HK, Cho GT, Ma KH, Chandrabalan D, Gwag JG, Kim TS, Cho EG, Park YJ (2007) PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23:2155–2162

    Article  CAS  PubMed  Google Scholar 

  • Marhadour S, Méar A, Dargier C, Laversin N, Perramant M, Pavy V, Meytraud F, Bronsard G, Esnault F, Le Hingrat Y (2014) Seed potato identification using SSR markers in France: organization, methods and database. 19th triennial conference EAPR . Brussels, Belgium, 2014, 6–11 July

  • Milbourne D, Meyer RC, Collins AJ, Ramsay LD, Gebhardt C, Waugh R (1998) Isolation, characterisation and mapping of simple sequence repeat loci in potato. Mol Gen Genet 259:233–245

    Article  CAS  PubMed  Google Scholar 

  • Nayak SN, Song J, Villa A, Pathak B, Ayala-Silva T, Yang X, Todd J, Glynn NC, Kuhn DN, Glaz B, Gilbert RA, Comstock JC, Wang J (2014) Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction. PLoS One 9:e110856

    Article  PubMed  PubMed Central  Google Scholar 

  • Odong TL, Jansen J, van Eeuwijk FA, van Hintum TJL (2013) Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation. Theor Appl Genet 126:289–305

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Python Software Foundation. http://www.python.org

  • Development Core Team R (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna ISBN 3-900051-07-0. http://www.R-project.org

    Google Scholar 

  • Schoen DJ, Brown AHD (1993) Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc Natl Acad Sci U S A 90:10623–10627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana, p. 117

    Google Scholar 

  • Sharma SK, Bolser D, de Boer J, Sonderkaer M, Amoros W, Carboni MF, D’Ambrosio JM, de la Cruz G, Di Genova A, Douches DS, Eguiluz M, Guo X, Guzman F, Hackett CA, Hamilton JP, Li GC, Li Y, Lozano R, Maass A, Marshall D, Martinez D, McLean K, Mejia N, Milne L, Munive S, Nagy I, Ponce O, Ramirez M, Simon R, Thomson SJ, Torres Y, Waugh R, Zhang ZH, Huang SW, Visser RGF, Bachem CWB, Sagredo B, Feingold SE, Orjeda G, Veilleux RE, Bonierbale M, Jacobs JME, Milbourne D, Martin DMA, Bryan GJ (2013) Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps. G3-genes genomes. Genetics 3:2031–2047

    Google Scholar 

  • Simko I, Haynes KG, Jones RW (2006) Assessment of linkage disequilibrium in potato genome with single nucleotide polymorphism markers. Genetics 173:2237–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spooner DM, Ghislain M, Simon R, Jansky SH, Gavrilenko T (2014) Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot Rev 80:283–383

    Article  Google Scholar 

  • Stich B, Urbany C, Hoffmann P, Gebhardt C (2013) Population structure and linkage disequilibrium in diploid and tetraploid potato revealed by genome-wide high-density genotyping using the SolCAP SNP array. Plant Breed 132:718–724

    Article  CAS  Google Scholar 

  • Storey JD (2002) A direct approach to false discovery rates. Journal of the Royal Statistical Society Series B-Statistical Methodology 64:479–498

    Article  Google Scholar 

  • Uitdewilligen J, Wolters AMA, D’Hoop BB, Borm TJA, Visser RGF, van Eck HJ (2013) A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS One 8(5):e62355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Hintum TJL, Brown AHD, Spillane C, Hodgkin T (2000) Core collections of plant genetic resources. IPGRI Tec. Bull. 3, International Plant Genetic Resources Institute, Rome, p. 51

    Google Scholar 

  • Van Treuren R, Engels JMM, Hoekstra R, Van Hintum TJL (2009) Optimization of the composition of crop collections for ex situ conservation. Plant Genetic Resources: Characterization and Utilization 7:185–193

    Article  Google Scholar 

  • Vos PG, Paulo MJ, Voorrips RE, Visser RGF, van Eck HJ, van Eeuwijk FA (2016) Evaluation of LD decay and various LD-decay estimators in simulated and SNP-array data of tetraploid potato. Theor Appl Genet. doi:10.1007/s00122-016-2798-8

Download references

Acknowledgments

We would like to thank the Experimental Unit RGCO for participation to the multiplication of genetic resources. We are grateful for useful discussions with Dominique Brunel. We thank Anne-Marie Chèvre, Marie-Claire Kerlan and Bernadette Julier for their valuable comments on this paper. We also thank the editor for his relevant suggestions on the manuscript. Finally, we would like to thank the CEA-IG/CNG for performing the DNA QC in its DNA and Cell Bank service and for providing INRA-EPGV group access to their Illumina Genotyping Platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Esnault.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esnault, F., Pellé, R., Dantec, JP. et al. Development of a Potato Cultivar (Solanum tuberosum L.) Core Collection, a Valuable Tool to Prospect Genetic Variation for Novel Traits. Potato Res. 59, 329–343 (2016). https://doi.org/10.1007/s11540-016-9332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11540-016-9332-x

Keywords

Navigation