Skip to main content

Advertisement

Log in

Nitrogen Responses and Nitrogen Management in Potato

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

Innumerable experiments have been carried out to establish the yield response of potato to the rate of nitrogen (N) supply. Given the continuing change in production level of potato and because of the need to maximise the nutrient use efficiency and to reduce losses of harmful nitrogenous compounds to the environment, such research is still necessary and topical. This minireview addresses dose–response curves of fertiliser N input; the development of N fertiliser recommendation systems; the so-called three-quadrant diagram of fertiliser N response which dissects the ‘agronomic response’ into the underlying components; the concept of critical nitrogen concentration as a function of crop biomass; environmental aspects of fertiliser nitrogen supply; and the strategy of the potato plant to cope with nitrogen limitation. European legislation sets limits on the input of nitrogen and sets norms on water quality, making nitrogen use efficiency (NUE) a critical issue. Precision agriculture may help to maximise NUE, provided an adequate diagnostic system is developed that distinguishes between nitrogen deficiency and other causes of spatially divergent crop performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahamsen P, Hansen S (2000) Daisy: an open soil–crop–atmosphere system model. Envir Modelling and Software 15:313–330

    Article  Google Scholar 

  • Biemond H, Vos J (1992) Effects of nitrogen on the development and growth of the potato plant. 2. The partitioning of dry matter, nitrogen and nitrate. Ann Bot 70:37–45

    CAS  Google Scholar 

  • Breimer T (1989) Stikstofbijmestsysteem (NBS) voor enige vollegrondsgroenten. Consulentschap voor Bodem- Water-, en Bemestingszaken in de Akkerbouw en Tuinbouw, Wageningen

  • Colnenne C, Meynard JM, Roche R, Reau R (2002) Effects of nitrogen deficiencies on autumnal growth of oilseed rape. Eur J Agron 17:11–28

    Article  CAS  Google Scholar 

  • Ducheyne S, Schadeck N, Vanongeval L, Vandendriessche H, Feyen J (2001) Assessment of the parameters of a mechanistic soil–crop–nitrogen simulation model using historic data of experimental field sites in Belgium. Agric Water Manag 51:53–78

    Article  Google Scholar 

  • Gastal F, Lemaire G (2002) N uptake and distribution in crops: an agronomical and ecophysiological perspective. J Exp Bot 53:789–799

    Article  CAS  PubMed  Google Scholar 

  • Geijpens M, Vandendriessche H (1996) Advisory systems for nitrogen fertilizer recommendations. Plant Soil 181:31–38

    Article  Google Scholar 

  • Gianquinto G, Goffart JP, Olivier MM, Guarda G, Colauzzi M, Dalla Costa L, Delle Vedove G, Vos J, MacKerron DKL (2004/2005) The use of hand-held chlorophyll meters as a tool to assess the nitrogen status and to guide nitrogen fertilization of potato crop. Potato Res 47:35–80

    Article  Google Scholar 

  • Goffart JP, Olivier M, Destain JP (2005) Presentation of a decision-support system (DSS) for nitrogen management in potato production to improve the use of resources. In: Haverkort AJ, Struik PC (eds) Potato in progress: science meets practice. Wageningen Academic Publishers, Wageningen, pp 134–142

    Google Scholar 

  • Greenwood DJ, Draycott A (1988) Recovery of fertilizer-N by diverse vegetable crops: processes and models. In: Jenkinson DS, Smith KA (eds) Nitrogen efficiency in agricultural soils. Elsevier Applied Science, London, pp 46–61

    Google Scholar 

  • Greenwood DJ, Lemaire G, Gosse G, Cruz P, Draycott A, Neeteson JJ (1990) Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann Bot 66:425–436

    CAS  Google Scholar 

  • Jongschaap REE (2006) Run-time calibration of simulation models by integrating remote sensing estimates of leaf area index and canopy nitrogen. Eur J Agron 24:316–324

    Article  Google Scholar 

  • Jongschaap REE, Booij R (2004) Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status. Int J Appl Earth Observation and Geoinformation 5:205–218

    Article  Google Scholar 

  • Liebscher G (1895) Untersuchungen über die Bestimmung des Düngerbedürfnisses der Ackerböden und Kulturpflanzen. J Landwirtschaft 43:49

    Google Scholar 

  • Lorenz H-J, Schlaghecken J, Engl G (1985) Gezielte Stickstoffversorgung. Das kulturbegleitende N min Sollwerte-System (KNS-System). Deutscher Gartenbau 13:646–648

    Google Scholar 

  • Marshall B, Vos J (1991) The relation between the nitrogen concentration and photosynthetic capacity of potato (Solanum tuberosum L.) leaves. Ann Bot 68:33–39

    CAS  Google Scholar 

  • Mitscherlich E (1909) Das Gesetz des Minimum, das Gesetz des Abnehmenden Bodenertrages. Landwirtschaftliches Jahrbuch der Schweiz 38:537–552

    CAS  Google Scholar 

  • Neeteson JJ (1994) Residual soil nitrate after application of nitrogen fertilizers to crops. In: Adriano DC, Iskandar AK, Murarka IP (eds) Groundwater contamination. Advances in environmental science. Science Reviews, Northwood, pp 347–365

    Google Scholar 

  • Neeteson JJ, Wadman WP (1987) Assessment of economically optimum application rates of fertilizer N on the basis of response curves. Fertiliser Res 12:37–52

    Article  Google Scholar 

  • Neeteson JJ, Greenwood DJ, Draycott A (1987) A dynamic model to predict yield and optimum nitrogen fertiliser application rate for potatoes. Proceedings no. 262. The Fertiliser Society, London

  • Nitrate Directive (1991) Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. Official Journal L 375, 31/12/1991:1–8

  • Nitsch A, Varis E (1991) Nitrate estimates using the Nitracheck test for precise N-fertilization during plant growth and, after harvest, for quality testing of potato tubers. Potato Res 34:95–105

    Article  Google Scholar 

  • Rémy J-C (1981) Etat actuel et perspectives de la mise en oeuvre de techniques de prévision de la fumure azotée. CR Acad Agr Fr 67:859–874

    Google Scholar 

  • Shepherd MA (1999) The effectiveness of cover crops during eight years of a UK sandland rotation. Soil Use Management 15:41–48

    Google Scholar 

  • van Alphen J (2002) A case study on precision nitrogen management in Dutch arable farming. Nutr Cycl Agroecosystems 62:151–161

    Article  Google Scholar 

  • van der Ploeg RR, Bohm W, Kirkham MB (1999) On the origin of the theory of mineral nutrition of plants and the law of the minimum. Soil Sci Soc Am J 63:1055–1062

    Article  Google Scholar 

  • van Keulen H (1982) Graphical analysis of annual crop response to fertiliser application. Agric Systems 9:113–126

    Article  Google Scholar 

  • Von Liebig J (1840) Die organische Chemie in ihrer Anwendung auf Agrikultur und Physiologie. Friedrich Vieweg und Sohn Publ Co, Braunschweig

    Google Scholar 

  • Vos J (1992) A case history: hundred years of potato production in Europe with special reference to The Netherlands. Amer Potato J 69:731–751

    Article  Google Scholar 

  • Vos J (1997) The nitrogen response of potato (Solanum tuberosum L.) in the field: nitrogen uptake and yield, harvest index and nitrogen concentration. Potato Res 40:237–248

    Article  CAS  Google Scholar 

  • Vos J (1999) Split nitrogen application in potato: effects on accumulation of nitrogen and dry matter in the crop and on the soil nitrogen budget. J Agric Sci, Camb 133:263–274

    Article  Google Scholar 

  • Vos J, Biemond H (1992) Effects of nitrogen on the development and growth of the potato plant. 1. Leaf appearance, expansion growth, life spans of leaves and stem branching. Ann Bot 70:27–35

    CAS  Google Scholar 

  • Vos J, van der Putten PEL (1998) Effect of nitrogen supply on leaf growth, leaf nitrogen economy and photosynthetic capacity in potato. Field Crops Res 59:63–72

    Article  Google Scholar 

  • Vos J, van der Putten PEL (2000) Nutrient cycling in a cropping system with potato, spring wheat, sugar beet, oats and nitrogen catch crops. I. Input and offtake of nitrogen, phosphorus and potassium. Nutr Cycl Agroecosystems 56:87–97

    Article  CAS  Google Scholar 

  • Vos J, van der Putten PEL (2001) Effects of partial shading of the potato plant on photosynthesis of treated leaves, leaf area expansion and allocation of nitrogen and dry matter in component plant parts. Eur J Agron 14:209–220

    Article  Google Scholar 

  • Vos J, van der Putten PEL (2004) Nutrient cycling in a cropping system with potato, spring wheat, sugar beet, oats and nitrogen catch crops. II. Effect of catch crops on nitrate leaching in autumn and winter. Nutri Cycl Agroecosystems 70:23–31

    Article  CAS  Google Scholar 

  • Vos J, van der Putten PEL, Birch CJ (2005) Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.). Field Crops Res 93:64–73

    Google Scholar 

  • Water Framework Directive (2000) Directive 2000/60/EC of the European parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur Communities L327:1–72

    Google Scholar 

  • Wu J, Wang D, Rosen CJ, Bauer ME (2007) Comparison of petiole nitrate concentrations, SPAD chlorophyll readings, and QuickBird satellite imagery in detecting nitrogen status of potato canopies. Field Crops Res 101:96–103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vos, J. Nitrogen Responses and Nitrogen Management in Potato. Potato Res. 52, 305–317 (2009). https://doi.org/10.1007/s11540-009-9145-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11540-009-9145-2

Keywords

Navigation