Skip to main content
Log in

Intermittent Precipitation-Dependent Interactions, Encompassing Allee Effect, May Yield Vegetation Patterns in a Transitional Parameter Range

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We construct a spatial model that incorporates Allee-type and competition interactions for vegetation as an evolving random field of biomass density. The cumulative effect of close-range precipitation-dependent interactions is controlled by a parameter defining precipitation frequency. We identify a narrow parameter range in which the behavior of the system changes from survival of vegetation to extinction, via a transitional aggregation pattern. The aggregation pattern is tied to the initial configuration and appears to arise differently from Turing’s diffusion and differential flow patterns of other models. There is close agreement of our critical transition parameter range with that of the corresponding evolving random mean-field model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The MATLAB codes used for the simulations are available from https://github.com/LuisFGordillo/codes

References

  • Bashan Y, de-Bashan LE (2010) Microbial populations of arid lands and their potential for restoration of deserts. In: Dion P (ed) Soil biology and agriculture in the tropics. Soil Biology, vol 21. Springer, Berlin

  • Borgogno F, D’Odorico P, Laio F, Ridolfi L (2009) Mathematical models of vegetation pattern formation in ecohydrology. Rev Geophys 47:RG1005

  • Buceta J, Lindemberg K, Parrondo JMR (2002) Pattern formation induced by nonequilibrium global alternation dynamics. Phys Rev E 66:036216

    Article  MathSciNet  Google Scholar 

  • Buceta J, Lindemberg K (2002) Switching-induced Turing instability. Phys Rev E 66:046202

    Article  MathSciNet  Google Scholar 

  • Chen Y, Kolokolnikov T, Tzou J, Gai C (2015) Patterned vegetation, tipping points, and the rate of climate change. Eur J Appl Math. Available on CJO 2015 https://doi.org/10.1017/S0956792515000261

  • Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, Oxford

    Book  Google Scholar 

  • D’Odorico P, Laio F, Ridolfi L (2006) Vegetation patterns induced by random climate functions. Geophys Res Lett 33:L19404

    Article  Google Scholar 

  • Gandhi P, Iams S, Bonetti S, Silber M (2019) Vegetation pattern formation in drylands. In: D’Odorico P, Porporato A, WilkinsonRunyan C (eds) Dryland Ecohydrology. Springer, Cham

    Google Scholar 

  • Gandhi P, Liu L, Silber M (2023) A pulsed-precipitation model of dryland vegetation pattern formation. SIAM J Appl Dyn Syst (in print)

  • Klausmeier CA (1999) Regular and irregular patterns in semiarid vegetation. Science 284:1826–1828

    Article  Google Scholar 

  • Levefer R, Lejeune O (1997) On the origin of the tiger bush. Bull Math Biol 59:263–294

    Article  MATH  Google Scholar 

  • Lejeune O, Tlidi M, Couteron P (2002) Localized vegetation patches: a self-organized response to resource scarcity. Phys Rev E 66:010901(R)

    Article  Google Scholar 

  • Lewis M, Petrovskii S, Potts J (2016) The mathematics behind biological invasions. Springer, Cham

    Book  MATH  Google Scholar 

  • Li Y, Johnston ST, Buenzli PR, van Heijster P, Simpson M (2022) Extinction of bistable populations is affected by the shape of their initial spatial distribution. Bull Math Biol 84:21

    Article  MathSciNet  MATH  Google Scholar 

  • Martínez-García R, Calabrase JM, Hernández-García E, López C (2013) Vegetation pattern formation in semiarid systems without facilitative mechanisms. Geophys Res Lett 40:6143–6147

    Article  Google Scholar 

  • Meron E (2015) Nonlinear physics of ecosystems. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Murray JD (2007) Mathematical biology: I. An Introduction, 3rd edn. Springer, New York

    Google Scholar 

  • Rodríguez-Iturbe I, Porporato A (2005) Ecohydrology of water-controlled ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Odum EP (1959) Fundamentals of ecology, 2nd edn. W.B. Saunders Company, Philadelphia

    Google Scholar 

  • Ridolfi L, Laio F, D’Odorico P (2008) Fertility island formation and evolution in dryland ecosystems. Ecol Soc 13(1):5

    Article  Google Scholar 

  • Ridolfi L, D’Odorico P, Laio F (2011) Noise-induced phenomena in the environmental sciences. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Schlesinger WH, Pilmanis AM (1998) Plant-soil interactions in deserts. Biogeochemistry 42:169–187

    Article  Google Scholar 

  • Surendran A, Plank MJ, Simpson MJ (2020) Population dynamics with spatial structure and an Allee effect. Proc R Soc. A. 476:20200501

    Article  MathSciNet  MATH  Google Scholar 

  • Sun G-Q et al (2021) Mathematical modeling and mechanisms of pattern formation in ecological systems: a review. Nonlinear Dyn 104:1677–1696

    Article  Google Scholar 

  • Volterra V (1938) Population growth, equilibria, and extinction under specified breeding conditions. Hum Biol 10(1):1–11

    Google Scholar 

  • von Hardenberg J, Meron E, Shachak M, Zarmi Y (2001) Diversity of vegetation patterns and desertification. Phys Rev Lett 87:198101

    Article  Google Scholar 

Download references

Acknowledgements

We thank the referees for several suggestions leading to improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis F. Gordillo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordillo, L.F., Greenwood, P.E. Intermittent Precipitation-Dependent Interactions, Encompassing Allee Effect, May Yield Vegetation Patterns in a Transitional Parameter Range. Bull Math Biol 85, 86 (2023). https://doi.org/10.1007/s11538-023-01191-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-023-01191-y

Keywords

Navigation