Skip to main content
Log in

Reaction–Diffusion Modeling of E. coli Colony Growth Based on Nutrient Distribution and Agar Dehydration

  • Original Paper
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The bacterial colony is a powerful experimental platform for broad biological research, and reaction–diffusion models are widely used to study the mechanisms of its formation process. However, there are still some crucial factors that drastically affect the colony growth but are not considered in the current models, such as the non-homogeneously distributed nutrient within the colony and the substantially decreasing expansion rate caused by agar dehydration. In our study, we propose two plausible reaction–diffusion models (the VN and MVN models) based on the above two factors and validate them against experimental data. Both models provide a plausible description of the non-homogeneously distributed nutrient within the colony and outperform the classical Fisher–Kolmogorov equation and its variation in better describing experimental data. Moreover, by accounting for agar dehydration, the MVN model captures how a colony’s expansion slows down and the change of a colony’s height profile over time. Furthermore, we demonstrate the existence of a traveling wave solution for the VN model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434(7037):1130–1134

    Article  Google Scholar 

  • Blanchard AE, Lu T (2015) Bacterial social interactions drive the emergence of differential spatial colony structures. BMC Syst Biol 9(1):1–13

    Article  Google Scholar 

  • Caboussat A, Glowinski R (2009) A numerical method for a non-smooth advection–diffusion problem arising in sand mechanics. Commun Pure Appl Anal 8(1):161

    Article  MathSciNet  MATH  Google Scholar 

  • Chacón JM, Möbius W, Harcombe WR (2018) The spatial and metabolic basis of colony size variation. ISME J 12(3):669–680

    Article  Google Scholar 

  • Chen W, Nie Q, Yi T-M, Chou C-S (2016) Modelling of yeast mating reveals robustness strategies for cell-cell interactions. PLoS Comput Biol 12(7):1004988

    Article  Google Scholar 

  • Cole JA, Kohler L, Hedhli J, Luthey-Schulten Z (2015) Spatially-resolved metabolic cooperativity within dense bacterial colonies. BMC Syst Biol 9(1):1–17

    Article  Google Scholar 

  • Dietrich LE, Okegbe C, Price-Whelan A, Sakhtah H, Hunter RC, Newman DK (2013) Bacterial community morphogenesis is intimately linked to the intracellular redox state. J Bacteriol 195(7):1371–1380

    Article  Google Scholar 

  • Droop MR (1968) Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. J Marine Biol Assoc UK 48(3):689–733

    Article  Google Scholar 

  • Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342

    Article  Google Scholar 

  • He C, Bayakhmetov S, Harris D, Kuang Y, Wang X (2020) A predictive reaction-diffusion based model of E. coli colony growth control. IEEE Control Syst Lett 5(6):1952–1957

    Article  Google Scholar 

  • Huang J, Lu G, Ruan S (2003) Existence of traveling wave solutions in a diffusive predator-prey model. J Math Biol 46(2):132–152

    Article  MathSciNet  MATH  Google Scholar 

  • Kawasaki K, Mochizuki A, Matsushita M, Umeda T, Shigesada N (1997) Modeling spatio-temporal patterns generated bybacillus subtilis. J Theor Biol 188(2):177–185

    Article  Google Scholar 

  • Kondo S, Miura T (2010) Reaction–diffusion model as a framework for understanding biological pattern formation. Science 329(5999):1616–1620

    Article  MathSciNet  MATH  Google Scholar 

  • Kreft J-U, Booth G, Wimpenny JW (1998) Bacsim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144(12):3275–3287

    Article  Google Scholar 

  • Lacasta A, Cantalapiedra I, Auguet C, Penaranda A, Ramirez-Piscina L (1999) Modeling of spatiotemporal patterns in bacterial colonies. Phys Rev E 59(6):7036

    Article  Google Scholar 

  • Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optim 9(1):112–147

    Article  MathSciNet  MATH  Google Scholar 

  • Langebrake JB, Dilanji GE, Hagen SJ, De Leenheer P (2014) Traveling waves in response to a diffusing quorum sensing signal in spatially-extended bacterial colonies. J Theor Biol 363:53–61

    Article  MathSciNet  MATH  Google Scholar 

  • Leyva JF, Málaga C, Plaza RG (2013) The effects of nutrient chemotaxis on bacterial aggregation patterns with non-linear degenerate cross diffusion. Physica A 392(22):5644–5662

    Article  MathSciNet  MATH  Google Scholar 

  • Li B (2018) Multiple invasion speeds in a two-species integro-difference competition model. J Math Biol 76(7):1975–2009

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Gonzalez F, Esteves N, Scharf BE, Chen J (2020) Formation of phage lysis patterns and implications on co-propagation of phages and motile host bacteria. PLoS Comput Biol 16(3):1007236

    Article  Google Scholar 

  • Luo N, Wang S, You L (2019) Synthetic pattern formation. Biochemistry 58(11):1478–1483

    Article  Google Scholar 

  • Mansour M (2008) Traveling wave solutions of a nonlinear reaction–diffusion-chemotaxis model for bacterial pattern formation. Appl Math Model 32(2):240–247

    Article  MATH  Google Scholar 

  • Matsushita M, Fujikawa H (1990) Diffusion-limited growth in bacterial colony formation. Physica A 168(1):498–506

    Article  Google Scholar 

  • Melke P, Sahlin P, Levchenko A, Jönsson H (2010) A cell-based model for quorum sensing in heterogeneous bacterial colonies. PLoS Comput Biol 6(6):1000819

    Article  MathSciNet  Google Scholar 

  • Mimura M, Tsujikawa T (1996) Aggregating pattern dynamics in a chemotaxis model including growth. Physica A 230(3–4):499–543

    Article  Google Scholar 

  • Mimura M, Sakaguchi H, Matsushita M (2000) Reaction–diffusion modelling of bacterial colony patterns. Physica A 282(1–2):283–303

    Article  Google Scholar 

  • Nikolopoulou E, Johnson L, Harris D, Nagy J, Stites E, Kuang Y (2018) Tumour-immune dynamics with an immune checkpoint inhibitor. Lett Biomath 5(2):137–159

    Article  MathSciNet  Google Scholar 

  • Ohgiwari M, Matsushita M, Matsuyama T (1992) Morphological changes in growth phenomena of bacterial colony patterns. J Phys Soc Jpn 61(3):816–822

    Article  Google Scholar 

  • Peñil Cobo M, Libro S, Marechal N, D’Entremont D, Peñil Cobo D, Berkmen M (2018) Visualizing bacterial colony morphologies using time-lapse imaging chamber mocha. J Bacteriol 200(2):00413–17

    Article  Google Scholar 

  • Peterson JR, Cole JA, Luthey-Schulten Z (2017) Parametric studies of metabolic cooperativity in Escherichia coli colonies: strain and geometric confinement effects. PLoS ONE 12(8):0182570

    Article  Google Scholar 

  • Potvin-Trottier L, Lord ND, Vinnicombe G, Paulsson J (2016) Synchronous long-term oscillations in a synthetic gene circuit. Nature 538(7626):514–517

    Article  Google Scholar 

  • Rudge TJ, Steiner PJ, Phillips A, Haseloff J (2012) Computational modeling of synthetic microbial biofilms. ACS Synth Biol 1(8):345–352

    Article  Google Scholar 

  • Schlüter DK, Ramis-Conde I, Chaplain MA (2015) Multi-scale modelling of the dynamics of cell colonies: insights into cell-adhesion forces and cancer invasion from in silico simulations. J R Soc Interface 12(103):20141080

    Article  Google Scholar 

  • Sekine R, Shibata T, Ebisuya M (2018) Synthetic mammalian pattern formation driven by differential diffusivity of nodal and lefty. Nat Commun 9(1):1–11

    Article  Google Scholar 

  • Shapiro JA (1995) The significances of bacterial colony patterns. BioEssays 17(7):597–607

    Article  Google Scholar 

  • Shin J, Noireaux V (2012) An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synthetic Biol 1(1):29–41

    Article  Google Scholar 

  • Srinivasan S, Kaplan CN, Mahadevan L (2019) A multiphase theory for spreading microbial swarms and films. Elife 8:42697

    Article  Google Scholar 

  • Stepien TL, Smith HL (2015) Existence and uniqueness of similarity solutions of a generalized heat equation arising in a model of cell migration. Discrete Contin Dyn Syst 35(7):3203

    Article  MathSciNet  MATH  Google Scholar 

  • Stepien TL, Rutter EM, Kuang Y (2018) Traveling waves of a go-or-grow model of glioma growth. SIAM J Appl Math 78(3):1778–1801

    Article  MathSciNet  MATH  Google Scholar 

  • Su P-T, Liao C-T, Roan J-R, Wang S-H, Chiou A, Syu W-J (2012) Bacterial colony from two-dimensional division to three-dimensional development. PLoS ONE 7(11):48098

    Article  Google Scholar 

  • Tyson JJ, Brazhnik PK (2000) On traveling wave solutions of fisher’s equation in two spatial dimensions. SIAM J Appl Math 60(2):371–391

    Article  MathSciNet  MATH  Google Scholar 

  • Ward JP, King JR, Koerber AJ, Croft JM, Sockett RE, Williams P (2003) Early development and quorum sensing in bacterial biofilms. J Math Biol 47(1):23–55

    Article  MathSciNet  MATH  Google Scholar 

  • Warren MR, Sun H, Yan Y, Cremer J, Li B, Hwa T (2019) Spatiotemporal establishment of dense bacterial colonies growing on hard agar. Elife 8:41093

    Article  Google Scholar 

  • Wimpenny JW (1979) The growth and form of bacterial colonies. Microbiology 114(2):483–486

    Google Scholar 

  • Wu F, He C, Fang X, Baez J, Ohnmacht T, Zhang Q, Chen X, Allison KR, Kuang Y, Wang X (2019) A synthetic biology approach to sequential stripe patterning and somitogenesis. bioRxiv 825406

  • Zhang L, Lander AD, Nie Q (2012) A reaction-diffusion mechanism influences cell lineage progression as a basis for formation, regeneration, and stability of intestinal crypts. BMC Syst Biol 6(1):1–13

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH) under Grant 5R01GM131405 and the US National Science Foundation (NSF) Rules of Life program DEB-1930728.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhan He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Han, L., Harris, D.C. et al. Reaction–Diffusion Modeling of E. coli Colony Growth Based on Nutrient Distribution and Agar Dehydration. Bull Math Biol 85, 61 (2023). https://doi.org/10.1007/s11538-023-01163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-023-01163-2

Keywords

Navigation