Skip to main content
Log in

Bifurcation and Pattern Formation in an Activator–Inhibitor Model with Non-local Dispersal

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, by approximating the non-local spatial dispersal equation by an associated reaction–diffusion system, an activator–inhibitor model with non-local dispersal is transformed into a reaction–diffusion system coupled with one ordinary differential equation. We prove that, to some extent, the non-locality-induced instability of the non-local system can be regarded as diffusion-driven instability of the reaction–diffusion system for sufficiently small perturbation. We study the structure of the spectrum of the corresponding linearized operator, and we use linear stability analysis and steady-state bifurcations to show the existence of non-constant steady states which generates non-homogeneous spatial patterns. As an example of our results, we study the bifurcation and pattern formation of a modified Klausmeier–Gray–Scott model of water–plant interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alfaro M, Izuhara H, Mimura M (2018) On a nonlocal system for vegetation in drylands. J Math Biol 77(6–7):1761–1793

    MathSciNet  MATH  Google Scholar 

  • Bai X-L, Li F (2018) Classification of global dynamics of competition models with nonlocal dispersals I: symmetric kernels. Calc Var Partial Differ Equ 57(6):1–35

    MathSciNet  MATH  Google Scholar 

  • Bellomo N, Bellouquid A, Tao Y, Winkler M (2015) Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math Models Methods Appl Sci 25(9):1663–1763

    MathSciNet  MATH  Google Scholar 

  • Chen S, Shi J, Zhang G (2021) Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete Contin Dyn Syst Ser B 26(4):1843–1866

    MathSciNet  MATH  Google Scholar 

  • Chen SS, Shi JP (2012) Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect. J Differ Equ 253(12):3440–3470

    MathSciNet  MATH  Google Scholar 

  • Chen SS, Yu JS (2018) Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete Contin Dyn Syst 38(1):43–62

    MathSciNet  MATH  Google Scholar 

  • Crandall M, Rabinowitz P (1971) Bifurcation from simple eigenvalues. J Funct Anal 8(2):321–340

    MathSciNet  MATH  Google Scholar 

  • Ei S-I, Ishii H (2021) The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete Contin Dyn Syst Ser B 26(1):173–190

    MathSciNet  MATH  Google Scholar 

  • Eigentler L, Sherratt J (2018) Analysis of a model for banded vegetation patterns in semi-arid environments with nonlocal dispersal. J Math Biol 77(3):739–763

    MathSciNet  MATH  Google Scholar 

  • Fu X, Griette Q, Magal P (2020) A cell-cell repulsion model on a hyperbolic Keller-Segel equation. J Math Biol 80(7):2257–2300

    MathSciNet  MATH  Google Scholar 

  • Fuentes MA, Kuperman MN, Kenkre VM (2003) Nonlocal interaction effects on pattern formation in population dynamics. Phys Rev Lett 91(15):158104

    Google Scholar 

  • Furter J, Grinfeld M (1989) Local vs. nonlocal interactions in population dynamics. J Math Biol 27(1):65–80

    MathSciNet  MATH  Google Scholar 

  • Gourley SA, Chaplain MAJ, Davidson FA (2001) Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation. Dyn Syst 16(2):173–192

    MathSciNet  MATH  Google Scholar 

  • Gray P, Scott S (1985) Sustained oscillations and other exotic patterns of behavior in isothermal reactions. J Phys Chem 89(1):22–32

    Google Scholar 

  • Horstmann D (2003) From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch Math -Verein 105(3):103–165

    MathSciNet  MATH  Google Scholar 

  • Hutson V, Martinez S, Mischaikow K, Vickers GT (2003) The evolution of dispersal. J Math Biol 47(6):483–517

    MathSciNet  MATH  Google Scholar 

  • Keller EF, Segel LA (1971) Model for chemotaxis. J Theoret Biol 30(2):225–234

    MATH  Google Scholar 

  • Klausmeier C (1999) Regular and irregular patterns in semiarid vegetation. Science 284(5421):1826–1828

    Google Scholar 

  • Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329(5999):1616–1620

    MathSciNet  MATH  Google Scholar 

  • Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77(7):2017–2042

    Google Scholar 

  • Li F, Lou Y, Wang Y (2014) Global dynamics of a competition model with non-local dispersal I: the shadow system. J Math Anal Appl 412(1):485–497

    MathSciNet  MATH  Google Scholar 

  • Li Y, Marciniak-Czochra A, Takagi I, Wu B (2017) Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis. Hiroshima Math J 47(2):217–247

    MathSciNet  MATH  Google Scholar 

  • Lou Y, Ni WM (1996) Diffusion, self-diffusion and cross-diffusion. J Differ Equ 131(1):79–131

    MathSciNet  MATH  Google Scholar 

  • Marciniak-Czochra A, Härting S, Karch G, Suzuki K (2018) Dynamical spike solutions in a nonlocal model of pattern formation. Nonlinearity 31(5):1757–1781

    MathSciNet  MATH  Google Scholar 

  • Marciniak-Czochra A, Karch G, Suzuki K (2017) Instability of Turing patterns in reaction-diffusion-ODE systems. J Math Biol 74(3):583–618

    MathSciNet  MATH  Google Scholar 

  • Meinhardt H (1992) Pattern formation in biology: a comparison of models and experiments. Rep Prog Phys 55(6):797

    Google Scholar 

  • Mimura M, Kawasaki K (1980) Spatial segregation in competitive interaction-diffusion equations. J Math Biol 9(1):49–64

    MathSciNet  MATH  Google Scholar 

  • Mimura M, Nishiura Y, Tesei A, Tsujikawa T (1984) Coexistence problem for two competing species models with density-dependent diffusion. Hiroshima Math J 14(2):425–449

    MathSciNet  MATH  Google Scholar 

  • Ni WM (1998) Diffusion, cross-diffusion, and their spike-layer steady states. Notices Amer Math Soc 45(1):9–18

    MathSciNet  MATH  Google Scholar 

  • Ninomiya H, Tanaka Y, Yamamoto H (2017) Reaction, diffusion and non-local interaction. J Math Biol 75(5):1203–1233

    MathSciNet  MATH  Google Scholar 

  • Pearson J (1993) Complex patterns in a simple system. Science 261(5118):189–192

    Google Scholar 

  • Pueyo Y, Kéfi S, Alados C, Rietkerk M (2008) Dispersal strategies and spatial organization of vegetation in arid ecosystems. Oikos 117(10):1522–1532

    Google Scholar 

  • Rietkerk M, Dekker S, De Ruiter P, van de Koppel J (2004) Self-organized patchiness and catastrophic shifts in ecosystems. Science 305(5692):1926–1929

    Google Scholar 

  • Sheth R, Marcon L, Bastida MF, Junco M, Quintana L, Dahn R, Kmita M, Sharpe J, Ros MA (2012) Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338(6113):1476–1480

    Google Scholar 

  • Shi J, Wang C, Wang H (2019) Diffusive spatial movement with memory and maturation delays. Nonlinearity 32(9):3188–3208

    MathSciNet  MATH  Google Scholar 

  • Shi J, Wang C, Wang H (2021) Spatial movement with diffusion and memory-based self-diffusion and cross-diffusion. J Differ Equ 305:242–269

    MathSciNet  MATH  Google Scholar 

  • Shi J, Wang C, Wang H, Yan X (2020) Diffusive spatial movement with memory. J Dynam Differ Equ 32(2):979–1002

    MathSciNet  MATH  Google Scholar 

  • Shi Q, Shi J, Song Y (2022) Effect of spatial average on the spatiotemporal pattern formation of reaction-diffusion systems. J Dynam Differ Equ 34(3):2123–2156

    MathSciNet  MATH  Google Scholar 

  • Shi Q, Shi J, and Wang H (2021) Spatial movement with distributed memory. J. Math. Biol., 82(4):Paper No. 33, 32

  • Sick S, Reinker S, Timmer J, Schlake T (2006) WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 314(5804):1447–1450

    Google Scholar 

  • Tian C, Shi Q, Cui X, Guo J, Yang Z, Shi J (2019) Spatiotemporal dynamics of a reaction-diffusion model of pollen tube tip growth. J Math Biol 79(4):1319–1355

    MathSciNet  MATH  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis Philos. Trans Roy Soc London Ser B 237(641):37–72

    MathSciNet  MATH  Google Scholar 

  • Wang X, Shi J, Zhang G (2021) Bifurcation and pattern formation in diffusive Klausmeier-Gray-Scott model of water-plant interaction. J Math Anal Appl 497(1):124860

    MathSciNet  MATH  Google Scholar 

  • Wang X, Zhang G (2021) Bifurcation analysis of a general activator-inhibitor model with nonlocal dispersal. Discrete Contin Dyn Syst Ser B 26(8):4459–4477

    MathSciNet  MATH  Google Scholar 

  • Yang F-Y, Li W-T, Ruan S (2019) Dynamics of a nonlocal dispersal SIS epidemic model with Neumann boundary conditions. J. Differential Equations 267(3):2011–2051

    MathSciNet  MATH  Google Scholar 

  • Yi FQ, Wei JJ, Shi JP (2009) Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. J Differ Equ 246(5):1944-1977

    MathSciNet  MATH  Google Scholar 

  • Zaytseva S, Shi J, Shaw LB (2020) Model of pattern formation in marsh ecosystems with nonlocal interactions. J Math Biol 80(3):655–686

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was done when the first author visited Department of Mathematics, William & Mary during the academic year 2018-2019, and she would like to thank Department of Mathematics, William & Mary for their support and warm hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Shi.

Additional information

In Memory of Professor Masayasu Mimura.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by Grants from National Science Foundation of China (11701472, 11871403, 11871060), China Scholarship Council and US-NSF Grant DMS-1853598, Fundamental Research Funds for the Central Universities (XDJK2020B050)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Shi, J. & Zhang, G. Bifurcation and Pattern Formation in an Activator–Inhibitor Model with Non-local Dispersal. Bull Math Biol 84, 140 (2022). https://doi.org/10.1007/s11538-022-01098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-022-01098-0

Keywords

Mathematics Subject Classification

Navigation