Skip to main content
Log in

Phage–Antibiotic Synergy Inhibited by Temperate and Chronic Virus Competition

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

As antibiotic resistance grows more frequent for common bacterial infections, alternative treatment strategies such as phage therapy have become more widely studied in the medical field. While many studies have explored the efficacy of antibiotics, phage therapy, or synergistic combinations of phages and antibiotics, the impact of virus competition on the efficacy of antibiotic treatment has not yet been considered. Here, we model the synergy between antibiotics and two viral types, temperate and chronic, in controlling bacterial infections. We demonstrate that while combinations of antibiotic and temperate viruses exhibit synergy, competition between temperate and chronic viruses inhibits bacterial control with antibiotics. In fact, our model reveals that antibiotic treatment may counterintuitively increase the bacterial load when a large fraction of the bacteria are antibiotic resistant, and both chronic and temperate phages are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All software (MATLAB .m files) are publicly available via the Illinois Data Bank (https://doi.org/10.13012/B2IDB-9460305_V1).

References

  • Barr JJ, Auro R, Sam-Soon N, Kassegne S, Peters G, Bonilla N, Hatay M, Mourtada S, Bailey B, Youle M et al (2015) Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters. Proc Natl Acad Sci 112(44):13675–13680

    Article  Google Scholar 

  • Bax R, Bastain W, Featherstone A, Wilkinson D, Hutchison M (1989) The pharmacokinetics of meropenem in volunteers. J Antimicrobial Chemother 24(suppl A):311–320

    Article  Google Scholar 

  • Brazas MD, Hancock RE (2005) Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49(8):3222–3227

    Article  Google Scholar 

  • Brives C, Pourraz J (2020) Phage therapy as a potential solution in the fight against AMR: obstacles and possible futures. Palgrave Commun 6(100):1–11

    Google Scholar 

  • Brüssow H, Canchaya C, Hardt W-D (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68(3):560–602

    Article  Google Scholar 

  • Burgener E, Sweere J, Bach M, Secor P, Haddock N, Jennings L, Marvig R, Johansen HK, Rossi E, Cao X, Tian L, Nedelec L, Molin S, Bollyky P, Milla C (2019) Filamentous bacteriophages are associated with chronic pseudomonas lung infections and antibiotic resistance in cystic fibrosis. Sci Transl Med 11(488):eaau9788

    Article  Google Scholar 

  • C. for Disease Control and Prevention (2019) 2019 ar threats report

  • Calendar R (2006) The bacteriophages. Oxford University Press on Demand, Oxford

    Google Scholar 

  • Ceyssens P-J, Brabban A, Rogge L, Lewis MS, Pickard D, Goulding D, Dougan G, Noben J-P, Kropinski A, Kutter E et al (2010) Molecular and physiological analysis of three Pseudomonas aeruginosa phages belonging to the Òn4-like virusesÓ. Virology 405(1):26–30

    Article  Google Scholar 

  • Chaudhry WN, Concepción-Acevedo J, Park T, Andleeb S, Bull JJ, Levin BR (2017) Synergy and order effects of antibiotics and phages in killing pseudomonas aeruginosa biofilms. PLoS ONE 12(1):e0168615

    Article  Google Scholar 

  • Clifton SM, Kim T, Chandrashekhar JH, O’Toole GA, Rapti Z, Whitaker RJ (2019) Lying in wait: modeling the control of bacterial infections via antibiotic-induced proviruses. MSystems 4(5):e00221-19

  • Clifton SM, Whitaker RJ, Rapti Z (2021) Temperate and chronic virus competition leads to low lysogen frequency. J Theor Biol 523:110710

    Article  MathSciNet  MATH  Google Scholar 

  • Comeau AM, Tétart F, Trojet SN, Prere M-F, Krisch H (2007) Phage-antibiotic synergy (pas): \(\beta \)-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS ONE 2(8):e799

    Article  Google Scholar 

  • Cortes MG, Krog J, Balazsi G (2019) Optimality of the spontaneous prophage induction rate. bioRxiv

  • Davies EV, Winstanley C, Fothergill JL, James CE (2016) The role of temperate bacteriophages in bacterial infection. FEMS Microbiol Lett 363(5):fnw015

    Article  Google Scholar 

  • De Smet J, Hendrix H, Blasdel BG, Danis-Wlodarczyk K, Lavigne R (2017) Pseudomonas predators: understanding and exploiting phage-host interactions. Nat Rev Microbiol 15(9):517

    Article  Google Scholar 

  • Dimmock NJ, Easton AJ, Leppard KN (2016) Introduction to modern virology. Wiley, Hoboken

    Google Scholar 

  • Doss J, Culbertson K, Hahn D, Camacho J, Barekzi N (2017) A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 9(3):50

    Article  Google Scholar 

  • Easwaran M, De Zoysa M, Shin H-J (2020) Application of phage therapy: synergistic effect of phage ecsw and antibiotic combination towards antibiotic-resistant Escherichia coli. Transbound Emerg Dis 67:2809–2817

    Article  Google Scholar 

  • El Didamony G, Askora A, Shehata AA (2015) Isolation and characterization of t7-like lytic bacteriophages infecting multidrug resistant Pseudomonas aeruginosa isolated from Egypt. Curr Microbiol 70(6):786–791

    Article  Google Scholar 

  • Fish DN, Chow AT (1997) The clinical pharmacokinetics of levofloxacin. Clin Pharmacokinet 32(2):101–119

    Article  Google Scholar 

  • Fisher RA, Gollan B, Helaine S (2017) Persistent bacterial infections and persister cells. Nat Rev Microbiol 15(8):453

    Article  Google Scholar 

  • Fong I, Ledbetter W, Kleinberg M, Jehl F (1986) Ciprofloxacin concentrations in bone and muscle after oral dosing. PLoS ONE 29(3):405–408

    Google Scholar 

  • Fothergill JL, Mowat E, Walshaw MJ, Ledson MJ, James CE, Winstanley C (2011) Effect of antibiotic treatment on bacteriophage production by a cystic fibrosis epidemic strain of Pseudomonas aeruginosa. Antimicrob Agents Chemother 55(1):426–428

    Article  Google Scholar 

  • Garbe J, Bunk B, Rohde M, Schobert M (2011) Sequencing and characterization of Pseudomonas aeruginosa phage jg004. BMC Microbiol 11(1):102

    Article  Google Scholar 

  • Garro AJ, Law M-F (1974) Relationship between lysogeny, spontaneous induction, and transformation efficiencies in Bacillus subtilis. J Bacteriol 120(3):1256–1259

    Article  Google Scholar 

  • Geller DE, Flume PA, Staab D, Fischer R, Loutit JS, Conrad DJ (2011) Levofloxacin inhalation solution (mp-376) in patients with cystic fibrosis with Pseudomonas aeruginosa. Am J Respir Crit Care Med 183(11):1510–1516

    Article  Google Scholar 

  • Grillon A, Schramm F, Kleinberg M, Jehl F (2016a) Comparative activity of ciprofloxacin, levofloxacin and moxifloxacin against Klebsiella pneumoniae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia assessed by minimum inhibitory concentrations and time-kill studies. PLoS ONE 11(6):e0156690

    Article  Google Scholar 

  • Grillon A, Schramm F, Vandenbroucke A, Simbul M, Rahm V (2016b) Comparative activity of ciprofloxacin, levofloxacin and moxifloxacin against Klebsiella pneumoniae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia assessed by minimum inhibitory concentrations and time-kill studies. PLoS ONE 11(6):e0156690

    Article  Google Scholar 

  • Hagens S, Habel A, Bläsi U (2006) Augmentation of the antimicrobial efficacy of antibiotics by filamentous phage. Microb Drug Resist 12(3):164–168

    Article  Google Scholar 

  • Hancock RE, Speert DP (2000) Antibiotic resistance in pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updates 3(4):247–255

    Article  Google Scholar 

  • Hargreaves KR, Kropinski AM, Clokie MR (2014) What does the talking? Quorum sensing signalling genes discovered in a bacteriophage genome. PLoS ONE 9(1):e85131

    Article  Google Scholar 

  • Harper DR, Parracho HM, Walker J, Sharp R, Hughes G, Werthén M, Lehman S, Morales S (2014) Bacteriophages and biofilms. Antibiotics 3(3):270–284

    Article  Google Scholar 

  • Heldal M, Bratbak G (1991) Production and decay of viruses in aquatic environments. Mar Ecol Prog Ser 72:205–212

    Article  Google Scholar 

  • Heo Y-J, Chung I-Y, Choi KB, Lau GW, Cho Y-H (2007) Genome sequence comparison and superinfection between two related Pseudomonas aeruginosa phages, d3112 and mp22. Microbiology 153(9):2885–2895

    Article  Google Scholar 

  • Hodson M, Butland R, Roberts C, Smith M, Batten J (1987) Oral ciprofloxacin compared with conventional intravenous treatment for Pseudomonas aeruginosa infection in adults with cystic fibrosis. Lancet 329(8527):235–237

    Article  Google Scholar 

  • Høiby N, Bjarnsholt T, Moser C, Bassi G, Coenye T, Donelli G, Hall-Stoodley L, Hola V, Imbert C, Kirketerp-Møller K et al (2015) ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect 21:S1–S25

    Article  Google Scholar 

  • Høiby N, Bjarnsholt T, Moser C, Jensen PØ, Kolpen M, Qvist T, Aanæs K, Pressler T, Skov M, Ciofu O (2017) Diagnosis of biofilm infections in cystic fibrosis patients. APMIS 125(4):339–343

    Article  Google Scholar 

  • Horvath P, Barrangou R (2010) Crispr/cas, the immune system of bacteria and archaea. Science 327(5962):167–170

    Article  Google Scholar 

  • James CE, Fothergill JL, Kalwij H, Hall AJ, Cottell J, Brockhurst MA, Winstanley C (2012) Differential infection properties of three inducible prophages from an epidemic strain of Pseudomonas aeruginosa. BMC Microbiol 12(1):216

    Article  Google Scholar 

  • James CE, Davies EV, Fothergill JL, Walshaw MJ, Beale CM, Brockhurst MA, Winstanley C (2015) Lytic activity by temperate phages of Pseudomonas aeruginosa in long-term cystic fibrosis chronic lung infections. ISME J 9(6):1391

    Article  Google Scholar 

  • Kaur S, Harjai K, Chhibber S (2012) Plaque-size enhancement of mrsa phages using sub-lethal concentrations of antibiotics. In: Applied and environmental microbiology, pp AEM-02371

  • Kim M, Jo Y, Hwang YJ, Hong HW, Hong SS, Park K, Myung H (2018) Phage-antibiotic synergy via delayed lysis. Appl Environ Microbiol 84(22):e02085-18

    Article  Google Scholar 

  • Kirschner D (2008) Uncertainty and sensitivity functions and implementation

  • Kopf SH, Sessions AL, Cowley ES, Reyes C, Van Sambeek L, Hu Y, Orphan VJ, Kato R, Newman DK (2016) Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum. Proc Natl Acad Sci 113(2):E110–E116

    Article  Google Scholar 

  • Kortright KE, Chan BK, Koff JL, Turner PE (2019) Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 25(2):219–232

    Article  Google Scholar 

  • Kung VL, Ozer EA, Hauser AR (2010) The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biol Rev 74(4):621–641

    Article  Google Scholar 

  • Latino L, Essoh C, Blouin Y, Thien HV, Pourcel C (2014) A novel pseudomonas aeruginosa bacteriophage, ab31, a chimera formed from temperate phage paju2 and p. putida lytic phage af: characteristics and mechanism of bacterial resistance. PLoS ONE 9(4):e93777

    Article  Google Scholar 

  • Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim H, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar F, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Otto C (2013) Antibiotic resistance—the need for global solutions. Lancet 13(12):1057–1098

    Article  Google Scholar 

  • Levin BR, Bull J (1996) Phage therapy revisited: the population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Am Nat 147(6):881–898

    Article  Google Scholar 

  • Levin BR, Udekwu KI (2010) Population dynamics of antibiotic treatment: a mathematical model and hypotheses for time-kill and continuous-culture experiments. Antimicrob Agents Chemother 54(8):3414–3426

    Article  Google Scholar 

  • Levin BR, Stewart FM, Chao L (1977) Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage. Am Nat 111(977):3–24

    Article  Google Scholar 

  • Li G, Leung C, Wardi Y, Debardieux L, Weitz J (2020) Optimizing the timing and composition of therapeutic phage cocktails: a control-theoretic approach. Bull Math Biol 82:75

    Article  MathSciNet  MATH  Google Scholar 

  • López E, Domenech A, Ferrándiz M-J, Frias MJ, Ardanuy C, Ramirez M, García E, Liñares J, Adela G (2014) Induction of prophages by fluoroquinolones in streptococcus pneumoniae: implications for emergence of resistance in genetically-related clones. PLoS ONE 9(4):e94358

    Article  Google Scholar 

  • Lwoff A (1953) Lysogeny. Bacteriol Rev 17(4):269

    Article  Google Scholar 

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254(1):178–196

    Article  MathSciNet  MATH  Google Scholar 

  • Martínez-García E, Jatsenko T, Kivisaar M, de Lorenzo V (2015) Freeing p seudomonas putida kt 2440 of its proviral load strengthens endurance to environmental stresses. Environ Microbiol 17(1):76–90

    Article  Google Scholar 

  • Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM, Koehrsen M, Rokas A, Yandava CN, Engels R, Zeng E et al (2008) Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci 105(8):3100–3105

    Article  Google Scholar 

  • McKay M, Beckman R, Conover W (1979) Comparison of three methods for selecting values of input variables in the analysis of output from a computer cod. Technometrics 21(2):239–245

    MathSciNet  MATH  Google Scholar 

  • Monack DM, Mueller A, Falkow S (2004) Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol 2(9):747

    Article  Google Scholar 

  • Mosquera-Rendón J, Rada-Bravo AM, Cárdenas-Brito S, Corredor M, Restrepo-Pineda E, Benítez-Páez A (2016) Pangenome-wide and molecular evolution analyses of the Pseudomonas aeruginosa species. BMC Genomics 17(1):45

    Article  Google Scholar 

  • Naber KG, Westenfelder SR, Madsen PO (1973) Pharmacokinetics of the aminoglycoside antibiotic tobramycin in humans. Antimicrob Agents Chemother 3(4):469–473

    Article  Google Scholar 

  • Nanda AM, Thormann K, Frunzke J (2015) Impact of spontaneous prophage induction on the fitness of bacterial populations and host–microbe interactions. J Bacteriol 197(3):410–419

    Article  Google Scholar 

  • Oppenheim AB, Adhya SL et al (2007) A new look at bacteriophage \(\lambda \) genetic networks. J Bacteriol 189(2):298–304

    Article  Google Scholar 

  • Payne RJ, Jansen VA (2001) Understanding bacteriophage therapy as a density-dependent kinetic process. J Theor Biol 208(1):37–48

    Article  Google Scholar 

  • Payne RJH, Jansen VAA (2003) Pharmacokinetic principles of bacteriophage therapy. Clin Pharmacokinet 42:315–325

    Article  Google Scholar 

  • Pourtois J, Kratochvil M, Chen Q, Haddock N, Burgener E, De Leo G, Bollyky P (2021) Filamentous bacteriophages and the competitive interaction between pseudomonas aeruginosa strains under antibiotic treatment: a modeling study. mSystems 6:e00193-21

    Article  Google Scholar 

  • Proesmans M, Vermeulen F, Boulanger L, Verhaegen J, De Boeck K (2012) Comparison of two treatment regimens for eradication of Pseudomonas aeruginosa infection in children with cystic fibrosis. J Cyst Fibros 12(1):29–34

    Article  Google Scholar 

  • Ptashne M (1986) A genetic switch: gene control and phage. lambda. Blackwell Scientific Publications, Palo Alto

    Google Scholar 

  • Rakonjac J (2012) Filamentous bacteriophages: biology and applications. American Cancer Society, Atlanta

    Google Scholar 

  • Redgrave LS, Sutton SB, Webber MA, Piddock LJ (2014) Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol 22(8):438–445

    Article  Google Scholar 

  • Regoes RR, Wiuff C, Zappala RM, Garner KN, Baquero F, Levin BR (2004) Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment regimens. Antimicrob Agents Chemother 48(10):3670–3676

    Article  Google Scholar 

  • Rodriguez-Gonzalez R, Leung C, Chan B, Turner P, Weitz J (2020) Quantitative models of phage-antibiotic combination therapy. mSystems 5:e00756-19

    Article  Google Scholar 

  • Rokney A, Kobiler O, Amir A, Court DL, Stavans J, Adhya S, Oppenheim AB (2008) Host responses influence on the induction of lambda prophage. Mol Microbiol 68(1):29–36

    Article  Google Scholar 

  • Roux S, Hallam SJ, Woyke T, Sullivan MB (2015) Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. Elife 4:e08490

    Article  Google Scholar 

  • Saltelli A (2002) Making best use of model evaluations to compute sensitivity indices. Comput Phys Commun 145(2):280–297

    Article  MathSciNet  MATH  Google Scholar 

  • Schrader HS, Schrader JO, Walker JJ, Wolf TA, Nickerson KW, Kokjohn TA (1997) Bacteriophage infection and multiplication occur in Pseudomonas aeruginosa starved for 5 years. Can J Microbiol 43(12):1157–1163

    Article  Google Scholar 

  • Secor PR, Sweere JM, Michaels LA, Malkovskiy AV, Lazzareschi D, Katznelson E, Rajadas J, Birnbaum ME, Arrigoni A, Braun KR et al (2015) Filamentous bacteriophage promote biofilm assembly and function. Cell Host Microbe 18(5):549–559

    Article  Google Scholar 

  • Shapiro JW, Williams ES, Turner PE (2016) Evolution of parasitism and mutualism between filamentous phage m13 and Escherichia coli. PeerJ 4:e2060

    Article  Google Scholar 

  • Silpe JE, Bassler BL (2018) A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Cell 176:268–280

    Article  Google Scholar 

  • Sinha V, Goyal A, Svenningsen SL, Semsey S, Krishna S (2017) In silico evolution of lysis-lysogeny strategies reproduces observed lysogeny propensities in temperate bacteriophages. Front Microbiol 8:1386

    Article  Google Scholar 

  • Sinha S, Grewal RK, Roy S (2018) Chapter three—modeling bacteria-phage interactions and its implications for phage therapy. In: Volume 103 of advances in applied microbiology. Academic Press, pp 103–141

  • Sousa J, Rocha E (2019) Environmental structure drives resistance to phages and antibiotics during phage therapy and to invading lysogens during colonisation. Sci Rep 9:3149

    Article  Google Scholar 

  • Spalding C, Keen E, Smith DJ, Krachler A-M, Jabbari S (2018) Mathematical modelling of the antibiotic-induced morphological transition of Pseudomonas aeruginosa. PLoS Comput Biol 14(2):e1006012

    Article  Google Scholar 

  • Spencer DH, Kas A, Smith EE, Raymond CK, Sims EH, Hastings M, Burns JL, Kaul R, Olson MV (2003) Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa. J Bacteriol 185(4):1316–1325

    Article  Google Scholar 

  • Stent GS et al (1963) Molecular biology of bacterial viruses. In: Molecular biology of bacterial viruses

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138

    Article  Google Scholar 

  • Stressmann FA, Rogers GB, Marsh P, Lilley AK, Daniels TW, Carroll MP, Hoffman LR, Jones G, Allen CE, Patel N, Forbes N, Forbes B, Tuck A, Bruce KD (2011) Does bacterial density in cystic fibrosis sputum increase prior to pulmonary exacerbation? J Cyst Fibros 10(5):357–365

    Article  Google Scholar 

  • Tang S, Chen L (2003) Quasiperiodic solutions and chaos in a periodically forced predator-prey model with age structure for predator. Int J Bifurc Chaos 13(4):973–980

    Article  MATH  Google Scholar 

  • Taylor R, Sherratt J, White A (2013) Seasonal forcing and multi-year cycles in interacting populations: lessons from a predator–prey model. J Math Biol 67(6):1741–1764

    Article  MathSciNet  MATH  Google Scholar 

  • Tazzyman SJ, Hall AR (2015) Lytic phages obscure the cost of antibiotic resistance in Escherichia coli. ISME J 9:809–820

    Article  Google Scholar 

  • Thingstad TF, Våge S, Storesund JE, Sandaa R-A, Giske J (2014) A theoretical analysis of how strain-specific viruses can control microbial species diversity. Proc Natl Acad Sci 111(21):7813–7818

    Article  Google Scholar 

  • Valencia EY, Esposito F, Spira B, Blázquez J, Galhardo RS (2017) Ciprofloxacin-mediated mutagenesis is suppressed by subinhibitory concentrations of amikacin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 61(3):e02107-16

    Article  Google Scholar 

  • Volkova VV, Lu Z, Besser T, Gröhn YT (2014) Modeling the infection dynamics of bacteriophages in enteric Escherichia coli: estimating the contribution of transduction to antimicrobial gene spread. Appl Environ Microbiol 80(14):4350–4362

    Article  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28(2):127–181

    Article  Google Scholar 

  • Weld RJ, Butts C, Heinemann JA (2004) Models of phage growth and their applicability to phage therapy. J Theor Biol 227:1–11

    Article  MATH  Google Scholar 

  • Wingender W, Graefe K-H, Gau W, Förster D, Beermann D, Schacht P (1984) Pharmacokinetics of ciprofloxacin after oral and intravenous administration in healthy volunteers. Eur J Clin Microbiol 3(4):355–359

    Article  Google Scholar 

  • You L, Suthers PF, Yin J (2002) Effects of Escherichia coli physiology on growth of phage t7 in vivo and in silico. J Bacteriol 184(7):1888–1894

    Article  Google Scholar 

  • Yu X, Xu Y, Gu Y, Zhu Y, Liu X (2017) Characterization and genomic study of Òphikmv-likeÓ phage paxyb1 infecting Pseudomonas aeruginosa. Sci Rep 7(1):13068

    Article  Google Scholar 

  • Zhanel GG, Fontaine S, Adam H, Schurek K, Mayer M, Noreddin AM, Gin AS, Rubinstein E, Hoban DJ (2006) A review of new fluoroquinolones. Treat Respir Med 5(6):437–465

    Article  Google Scholar 

  • Zhang X, McDaniel AD, Wolf LE, Keusch GT, Waldor MK, Acheson DW (2000) Quinolone antibiotics induce shiga toxin-encoding bacteriophages, toxin production, and death in mice. J Infect Dis 181(2):664–670

    Article  Google Scholar 

  • Zwietering M, Jongenburger I, Rombouts F, Van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56(6):1875–1881

Download references

Acknowledgements

The authors thank Jayadevi H. Chandrashekhar and George A. O’Toole for discussions that informed biological aspects of this work. Thanks are also due to Ted Kim and Karna Gowda for assistance with parameter selection. The authors also thank Laura Suttenfield, Alan Collins, and two anonymous reviewers for suggestions that greatly improved the clarity of the paper.

Funding

This work was funded in part by the National Science Foundation grant DMS-1815764 (ZR), the Cystic Fibrosis Foundation grant WHITAK16PO (RJW), and an Allen Distinguished Investigator Award (RJW). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara M. Clifton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 204 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landa, K.J., Mossman, L.M., Whitaker, R.J. et al. Phage–Antibiotic Synergy Inhibited by Temperate and Chronic Virus Competition. Bull Math Biol 84, 54 (2022). https://doi.org/10.1007/s11538-022-01006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-022-01006-6

Keywords

Navigation