Skip to main content
Log in

Extinction of Bistable Populations is Affected by the Shape of their Initial Spatial Distribution

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The question of whether biological populations survive or are eventually driven to extinction has long been examined using mathematical models. In this work, we study population survival or extinction using a stochastic, discrete lattice-based random walk model where individuals undergo movement, birth and death events. The discrete model is defined on a two-dimensional hexagonal lattice with periodic boundary conditions. A key feature of the discrete model is that crowding effects are introduced by specifying two different crowding functions that govern how local agent density influences movement events and birth/death events. The continuum limit description of the discrete model is a nonlinear reaction-diffusion equation, and we focus on crowding functions that lead to linear diffusion and a bistable source term that is often associated with the strong Allee effect. Using both the discrete and continuum modelling tools, we explore the complicated relationship between the long-term survival or extinction of the population and the initial spatial arrangement of the population. In particular, we study different spatial arrangements of initial distributions: (i) a well-mixed initial distribution where the initial density is independent of position in the domain; (ii) a vertical strip initial distribution where the initial density is independent of vertical position in the domain; and, (iii) several forms of two-dimensional initial distributions where the initial population is distributed in regions with different shapes. Our results indicate that the shape of the initial spatial distribution of the population affects extinction of bistable populations. All software required to solve the discrete and continuum models used in this work are available on GitHub.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allee WC, Bowen ES (1932) Studies in animal aggregations: Mass protection against colloidal silver among goldfishes. J Exp Zool 61(2):185–207

    Article  Google Scholar 

  • Arroyo-Esquivel J, Hastings A (2020) Spatial dynamics and spread of ecosystem engineers: two patch analysis. Bull Math Biol 82(12):149

    Article  MathSciNet  MATH  Google Scholar 

  • Baker RE, Simpson MJ (2010) Correcting mean-field approximations for birth-death-movement processes. Phys Rev E 82:041905

    Article  MathSciNet  Google Scholar 

  • Böttger K, Hatzikirou H, Voss-Böhme A, Cavalcanti-Adam EA, Herrero MA, Deutsch A (2015) An emerging Allee effect is critical for tumor initiation and persistence. PLoS Comput Biol 11(9):e1004366

    Article  Google Scholar 

  • Bradford E, Philip JR (1970) Stability of steady distributions of asocial populations dispersing in one dimension. J Theor Biol 29(1):13–26

    Article  Google Scholar 

  • Bradford E, Philip JR (1970) Note on asocial populations dispersing in two dimensions. J Theor Biol 29(1):27–33

    Article  Google Scholar 

  • Chaplain MAJ, Lorenzi T, Macfarlane FR (2020) Bridging the gap between individual-based and continuum models of growing cell populations. J Math Biol 80(1):343–371

    Article  MathSciNet  MATH  Google Scholar 

  • Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trend Ecol Evol 14(10):405–410

    Article  Google Scholar 

  • Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, Oxford

    Book  Google Scholar 

  • Deroulers C, Aubert M, Badoual M, Grammaticos B (2009) Modeling tumor cell migration: from microscopic to macroscopic models. Phys Rev E 79:031917

    Article  MathSciNet  Google Scholar 

  • Drake JM (2004) Allee effects and the risk of biological invasion. Risk Anal 24(4):795–802

    Article  Google Scholar 

  • Druckenbrod NR, Epstein ML (2005) The pattern of neural crest advance in the cecum and colon. Dev Biol 287(1):125–133

    Article  Google Scholar 

  • Edelstein-Keshet L (2005) Mathematical models in biology. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Etienne R, Wertheim B, Hemerik L, Schneider P, Powell J (2002) The interaction between dispersal, the Allee effect and scramble competition affects population dynamics. Ecol Model 148(2):153–168

    Article  Google Scholar 

  • Fadai NT, Simpson MJ (2020) Population dynamics with threshold effects give rise to a diverse family of Allee effects. Bull Math Biol 82(6):74

    Article  MathSciNet  MATH  Google Scholar 

  • Fadai NT, Johnston ST, Simpson MJ (2020) Unpacking the Allee effect: determining individual-level mechanisms that drive global population dynamics. Proc Royal Soc A: Math, Phys Eng Sci 476(2241):20200350

    Article  MathSciNet  MATH  Google Scholar 

  • Fife PC (1979) Long time behavior of solutions of bistable nonlinear diffusion equationsn. Arch Ration Mech Anal 70(1):31–36

    Article  MATH  Google Scholar 

  • Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7(4):355–369

    Article  MATH  Google Scholar 

  • Grindrod P (1996) The theory and applications of reaction-diffusion equations: patterns and waves. Clarendon Press, UK

    MATH  Google Scholar 

  • Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S, Freestone A, Harrison S, Holland M, Lambrinos J, Malvadkar U, Melbourne BA, Moore K, Taylor C, Thomson D (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8(1):91–101

    Article  Google Scholar 

  • Holmes EE, Lewis MA, Banks JE, Veit RR (1994) Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75(1):17–29

    Article  Google Scholar 

  • Hughes BD (1995) Random walks and random environments: random walks, vol 1. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Jin W, Penington CJ, McCue SW, Simpson MJ (2016) Stochastic simulation tools and continuum models for describing two-dimensional collective cell spreading with universal growth functions. Phys Biol 13(5):056003

    Article  Google Scholar 

  • Johnston ST, Baker RE, McElwain DLS, Simpson MJ (2017) Co-operation, competition and crowding: a discrete framework linking Allee kinetics, nonlinear diffusion, shocks and sharp-fronted travelling waves. Sci Rep 7(1):42134

    Article  Google Scholar 

  • Kot M (2001) Elements of mathematical ecology. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77(7):2027–2042

    Article  Google Scholar 

  • Krause AL, Van Gorder RA (2020) A non-local cross-diffusion model of population dynamics II: exact, approximate, and numerical traveling waves in single- and multi-species populations. Bull Math Biol 82(8):113

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis MA, Kareiva P (1993) Allee dynamics and the spread of invading organisms. Theor Popul Biol 43(2):141–158

    Article  MATH  Google Scholar 

  • Lewis MA, Petrovskii SV, Potts JR (2016) The mathematics behind biological invasions, vol 44. Springer, Cham

    MATH  Google Scholar 

  • Lutscher F (2019) Integrodifference equations in spatial ecology. Springer, Cham

    Book  MATH  Google Scholar 

  • Lutscher F, Nisbet RM, Pachepsky E (2010) Population persistence in the face of advection. Thyroid Res 3(4):271–284

    Google Scholar 

  • Macfarlane FR, Lorenzi T, Chaplain MAJ (2018) Modelling the immune response to cancer: an individual-based approach accounting for the difference in movement between inactive and activated T cells. Bull Math Biol 80(6):1539–1562

    Article  MathSciNet  MATH  Google Scholar 

  • Maini PK, McElwain DLS, Leavesley D (2004) Traveling wave model to interpret a wound-healing cell migration assay for human peritoneal mesothelial cells. Tissue Eng 10(3–4):475–482

    Article  Google Scholar 

  • Maini PK, McElwain DLS, Leavesley D (2004) Travelling waves in a wound healing assay. Appl Math Lett 17(5):575–580

    Article  MathSciNet  MATH  Google Scholar 

  • Murray JD (2002) Mathematical biology: I. An introduction, Springer, New York

    Book  Google Scholar 

  • Neufeld Z, von Witt W, Lakatos D, Wang J, Hegedus B, Czirok A (2017) The role of Allee effect in modelling post resection recurrence of glioblastoma. PLoS Comput Biol 13(11):e1005818

    Article  Google Scholar 

  • Petrovskii S, Shigesada N (2001) Some exact solutions of a generalized Fisher equation related to the problem of biological invasion. Math Biosci 172(2):73–94

    Article  MathSciNet  MATH  Google Scholar 

  • Saltz D, Rubenstein DI (1995) Population dynamics of a reintroduced asiatic wild ass (Equus hemionus) herd. Ecol Appl 5(2):327–335

    Article  Google Scholar 

  • Sewalt L, Harley K, van Heijster P, Balasuriya S (2016) Influences of Allee effects in the spreading of malignant tumours. J Theor Biol 394:77–92

    Article  MathSciNet  MATH  Google Scholar 

  • Simpson MJ (2009) Depth-averaging errors in reactive transport modeling. Water Resour Res 45:W02505

    Article  Google Scholar 

  • Simpson MJ, Landman KA, Hughes BD (2009) Multi-species simple exclusion processes. Physica A 388(4):399–406

    Article  Google Scholar 

  • Simpson MJ, Landman KA, Hughes BD (2009) Pathlines in exclusion processes. Phys Rev E 79(3):031920

    Article  Google Scholar 

  • Simpson MJ, Landman KA, Hughes BD (2010) Cell invasion with proliferation mechanisms motivated by time-lapse data. Physica A 389(18):3779–3790

    Article  Google Scholar 

  • Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38(1/2):196–218

    Article  MathSciNet  MATH  Google Scholar 

  • Soboleva TK, Shorten PR, Pleasants AB, Rae AL (2003) Qualitative theory of the spread of a new gene into a resident population. Ecol Model 163(1–2):33–44

    Article  Google Scholar 

  • Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the Allee effect? Oikos 87(1):185–190

    Article  Google Scholar 

  • Taylor CM, Hastings A (2005) Allee effects in biological invasions. Ecol Lett 8(8):895–908

    Article  Google Scholar 

  • Taylor NP, Kim H, Krause AL, Van Gorder RA (2020) A non-local cross-diffusion model of population dynamics I: emergent spatial and spatiotemporal patterns. Bull Math Biol 82(8):112

    Article  MathSciNet  MATH  Google Scholar 

  • Treloar KK, Simpson MJ, McElwain DLS, Baker RE (2014) Are in vitro estimates of cell diffusivity and cell proliferation rate sensitive to assay geometry? J Theor Biol 356:71–84

    Article  MATH  Google Scholar 

  • Vortkamp I, Schreiber SJ, Hastings A, Hilker FM (2020) Multiple attractors and long transients in spatially structured populations with an Allee effect. Bull Math Biol 82(6):82

    Article  MathSciNet  MATH  Google Scholar 

  • West J, Hasnain Z, Macklin P, Newton PK (2016) An evolutionary model of tumor cell kinetics and the emergence of molecular heterogeneity driving gompertzian growth. SIAM Rev 58(4):716–736

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang S, Chong A, Hughes BD (2019) Persistent exclusion processes: Inertia, drift, mixing, and correlation. Phys Rev E 100:042415

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Australian Research Council (DP200100177, DE200100988, DP190102545). We thank the two referees and the handling editor for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Simpson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Johnston, S.T., Buenzli, P.R. et al. Extinction of Bistable Populations is Affected by the Shape of their Initial Spatial Distribution. Bull Math Biol 84, 21 (2022). https://doi.org/10.1007/s11538-021-00974-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-021-00974-5

Keywords

Navigation