Skip to main content
Log in

The Case for Algebraic Biology: from Research to Education

  • Special Issue: Mathematical Biology Education
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Though it goes without saying that linear algebra is fundamental to mathematical biology, polynomial algebra is less visible. In this article, we will give a brief tour of four diverse biological problems where multivariate polynomials play a central role—a subfield that is sometimes called algebraic biology. Namely, these topics include biochemical reaction networks, Boolean models of gene regulatory networks, algebraic statistics and genomics, and place fields in neuroscience. After that, we will summarize the history of discrete and algebraic structures in mathematical biology, from their early appearances in the late 1960s to the current day. Finally, we will discuss the role of algebraic biology in the modern classroom and curriculum, including resources in the literature and relevant software. Our goal is to make this article widely accessible, reaching the mathematical biologist who knows no algebra, the algebraist who knows no biology, and especially the interested student who is curious about the synergy between these two seemingly unrelated fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allman ES, Allman ES, Rhodes JA (2004) Mathematical models in biology: an introduction. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Casanellas M, Rhodes JA (2019) Algebraic methods in phylogenetics. Bull Math Biol 81:313–315

    MATH  Google Scholar 

  • Chifman J, Kubatko L (2014) Quartet inference from SNP data under the coalescent model. Bioinformatics 30(23):3317–3324

    Google Scholar 

  • Conradi C, Mincheva M, Shiu A (2019) Emergence of oscillations in a mixed-mechanism phosphorylation system. Bull Math Biol 81(6):1829–1852

    MathSciNet  MATH  Google Scholar 

  • Cox D (2020) Applications of polynomial systems, vol 134. American Mathematical Society, Providence, Rhode Island

  • Craciun G, Dickenstein A, Shiu A, Sturmfels B (2009) Toric dynamical systems. J Symb Comput 44(11):1551–1565

    MathSciNet  MATH  Google Scholar 

  • Craciun G, Feinberg M (2005) Multiple equilibria in complex chemical reaction networks: I. The injectivity property. SIAM J Appl Math 65(5):1526–1546

    MathSciNet  MATH  Google Scholar 

  • Craciun G, Feinberg M (2006) Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph. SIAM J Appl Math 66(4):1321–1338

    MathSciNet  MATH  Google Scholar 

  • Craciun G, Nazarov F, Pantea C (2013) Persistence and permanence of mass-action and power-law dynamical systems. SIAM J Appl Math 73(1):305–329

    MathSciNet  MATH  Google Scholar 

  • Crama Y, Hammer PL (2010) Boolean models and methods in mathematics, computer science, and engineering, vol 2. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Cui L, Kumara S, Albert R (2010) Complex networks: an engineering view. IEEE Circuits Syst Mag 10(3):10–25

    Google Scholar 

  • Curto C, Gross E, Jeffries J, Morrison K, Rosen Z, Shiu A, Youngs N (2019) Algebraic signatures of convex and non-convex codes. J Pure Appl Algebra 223:3919–3940

    MathSciNet  MATH  Google Scholar 

  • Curto C, Itskov V, Morrison K, Roth Z, Walker JL (2013) Combinatorial neural codes from a mathematical coding theory perspective. Neural Comput 25(7):1891–1925

    MathSciNet  MATH  Google Scholar 

  • Curto C, Itskov V, Veliz-Cuba A, Youngs N (2013) The neural ring: an algebraic tool for analyzing the intrinsic structure of neural codes. Bull Math Biol 75(9):1571–1611

    MathSciNet  MATH  Google Scholar 

  • Davidich M, Bornholdt S (2008) Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3(2):e1672

    Google Scholar 

  • Decker W, Greuel G-M, Pfister G, Schönemann H (2017) Singular 4-1-0—A computer algebra system for polynomial computations. http://www.singular.uni-kl.de. Accessed 17 Aug 2020

  • Diaconis P, Sturmfels B et al (1998) Algebraic algorithms for sampling from conditional distributions. Ann Stat 26(1):363–397

    MathSciNet  MATH  Google Scholar 

  • Drossel B (2009) Random Boolean networks, chapter 3. Wiley, Weinheim, pp 69–110

    MATH  Google Scholar 

  • Fauré A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14):e124–e131

    Google Scholar 

  • Feinberg M (2019) Foundations of chemical reaction network theory. Springer, Berlin

    MATH  Google Scholar 

  • Fernández-Sánchez J, Casanellas M (2016) Invariant versus classical quartet inference when evolution is heterogeneous across sites and lineages. Syst Biol 65(2):280–291

    Google Scholar 

  • Garcia R, Garcia Puente L, Kruse R, Liu J, Miyata D, Petersen E, Phillipson K (2018) Gröbner bases of neural ideals. Int J Algebra Comput 28(4):553–571

    MATH  Google Scholar 

  • Gatermann K (2000) Computer algebra methods for equivariant dynamical systems. Springer, Berlin

    MATH  Google Scholar 

  • Golubitsky M, Stewart I (2002) The symmetry perspective: from equilibrium to chaos in phase space and physical space, vol 200. Birkhäuser Verlag, Basel

    MATH  Google Scholar 

  • Gonzalez A, Naldi A, Sanchez L, Thieffry D, Chaouiya C (2006) GINsim: a software suite for the qualitative modelling, simulation and analysis of regulatory networks. Biosystems 84(2):91–100

    Google Scholar 

  • Grayson D, Stillman M (2020) Macaulay2, a software system for research in algebraic geometry. https://faculty.math.illinois.edu/Macaulay2/. Accessed 17 Aug 2020

  • Gross E, Harrington HA, Rosen Z, Sturmfels B (2016) Algebraic systems biology: a case study for the wnt pathway. Bull Math Biol 78(1):21–51

    MathSciNet  MATH  Google Scholar 

  • Harrington HA, Omar M, Wright M (2017) Algebraic and geometric methods in discrete mathematics, vol 685. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3(3):318–356

    Google Scholar 

  • Jaeger J, Monk N (2014) Bioattractors: dynamical systems theory and the evolution of regulatory processes. J Physiol 592(11):2267–2281

    Google Scholar 

  • Jonoska N, Saito M (2013) Discrete and topological models in molecular biology. Springer, Heidelberg

    MATH  Google Scholar 

  • Jukes TH, Cantor CR et al (1969) Evolution of protein molecules. Mamm Protein Metab 3(21):132

    Google Scholar 

  • Laubenbacher R, Sturmfels B (2009) Computer algebra in systems biology. Am Math Mon 116:882–891

    MathSciNet  MATH  Google Scholar 

  • Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proc Acad Natl Sci 101(14):4781–4786

    Google Scholar 

  • Liu W-M (1994) Criterion of Hopf bifurcations without using eigenvalues. J Math Anal Appl 182(1):250–256

    MathSciNet  MATH  Google Scholar 

  • Macauley M, Robeva R (2020) Algebraic models, pseudonomials, and inverse problems in algebraic biology. Lett Biomath 7(1):81–104

    Google Scholar 

  • Maclagan D, Sturmfels B (2015) Introduction to tropical geometry, vol 161. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Mendoza L, Thieffry D, Alvarez-Buylla E (1999) Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics 15(7):593–606

    Google Scholar 

  • Nise N S (2019) Control systems engineering, 8th edn. Wiley, Hoboken

    MATH  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1):171–175

    Google Scholar 

  • Pachter L, Sturmfels B (2005) Algebraic statistics for computational biology, vol 13. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Pachter L, Sturmfels B (2007) The mathematics of phylogenomics. SIAM Rev 49(1):3–31

    MathSciNet  MATH  Google Scholar 

  • Pantea C, Gupta A, Rawlings JB, Craciun G (2014) The QSSA in chemical kinetics: as taught and as practiced. In: Jonoska N, Saito M (eds) Discrete and topological models in molecular biology, pp 419–442. Springer

  • Petersen E, Youngs N, Kruse R, Miyata D, Garcia R, Puente LDG (2018) Neural ideals in sagemath. In: International congress on mathematical software, pp 182–190, Springer

  • Pistone G, Riccomagno E, Wynn HP (2000) Algebraic statistics: computational commutative algebra in statistics. Chapman and Hall/CRC, London

    MATH  Google Scholar 

  • Rabadán R, Blumberg AJ (2019) Topological data analysis for genomics and evolution: topology in biology. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key cryptosystems. Commun ACM 21(2):120–126

    MathSciNet  MATH  Google Scholar 

  • Robeva R (2015) Algebraic and discrete mathematical methods for modern biology. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Robeva R, Hodge T (2013) Mathematical concepts and methods in modern biology: using modern discrete models. Academic Press, Cambridge

    MATH  Google Scholar 

  • Robeva R, Macauley M (2018) Algebraic and combinatorial computational biology. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Romanovski V, Shafer D (2009) The center and cyclicity problems: a computational algebra approach. Springer, Berlin

    MATH  Google Scholar 

  • Shiu A, Sturmfels B (2010) Siphons in chemical reaction networks. Bull Math Biol 72(6):1448–1463

    MathSciNet  MATH  Google Scholar 

  • Stigler B, Chamberlin H (2012) A regulatory network modeled from wild-type gene expression data guides functional predictions in caenorhabditis elegans development. BMC Syst Biol 6(1):77

    Google Scholar 

  • Sturmfels B (2005) Can biology lead to new theorems. Annual report of the clay mathematics institute, pp 13–26

  • Sullivant S (2018) Algebraic statistics, vol 194. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Thomas R, d’Ari R (1990) Biological feedback. CRC Press, Boca Raton (updated 2006)

    MATH  Google Scholar 

  • Votaw DF Jr (1948) Testing compound symmetry in a normal multivariate distribution. Ann Math Stat 19:447–473

    MathSciNet  MATH  Google Scholar 

  • Wang R-S, Saadatpour A, Albert R (2012) Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol 9(5):055001

    Google Scholar 

  • Wasserman L (2018) Topological data analysis. Annu Rev Stat Appl 5:501–532

    MathSciNet  Google Scholar 

  • Wilks SS (1946) Sample criteria for testing equality of means, equality of variances, and equality of covariances in a normal multivariate distribution. Ann Math Stat 17:257–281

    MathSciNet  MATH  Google Scholar 

  • Yartsev M, Ulanovsky N (2013) Representation of three-dimensional space in the hippocampus of flying bats. Science 340(6130):367–72

    Google Scholar 

  • Youngs N (2014) The neural ring: using algebraic geometry to analyze neural codes. PhD thesis, University of Nebraska, Lincoln,

  • Youngs N (2015) Neural ideal: a Matlab package for computing canonical forms. https://github.com/nebneuron/neural-ideal/. Accessed 17 Aug 2020

Download references

Acknowledgements

The authors would like to thank Elena Dimitrova, Heather Harrington, Reinhard Laubenbacher, and Raina Robeva for their feedback on an earlier draft of this article. The authors are also grateful to two anonymous referees who provided a detailed critiques and suggestions that gave us a fresh perspective led to a number of improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Macauley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Matthew Macauley is partially supported by Simons Foundation Grant #358242. Nora Youngs is supported by the Clare Boothe Luce Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macauley, M., Youngs, N. The Case for Algebraic Biology: from Research to Education. Bull Math Biol 82, 115 (2020). https://doi.org/10.1007/s11538-020-00789-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00789-w

Keywords

Mathematics Subject Classification

Navigation