Skip to main content
Log in

Basic Reproduction Numbers for a Class of Reaction-Diffusion Epidemic Models

  • Original Paper
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study the basic reproduction numbers for a class of reaction-diffusion epidemic models that are developed from autonomous ODE systems. We present a general numerical framework to compute such basic reproduction numbers; meanwhile, the numerical formulation provides useful insight into their characterizations. Using matrix analysis, we show that the basic reproduction numbers are the same for these PDE models and their associated ODE models in several important cases that include, among others, a single infected compartment, constant diffusion rates, uniform diffusion patterns among the infected compartments, and partial diffusion in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen LJS, Bolker BM, Lou Y, Nevai AL (2008) Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Contin Dyn Syst 21:1–20

    Article  MathSciNet  Google Scholar 

  • Bertuzzo E, Casagrandi R, Gatto M, Rodriguez-Iturbe I, Rinaldo A (2010) On spatially explicit models of cholera epidemics. J R Soc Interface 7:321–333

    Article  Google Scholar 

  • Cantrell RS, Cosner C (1991) The effects of spatial heterogeneity in population dynamics. J Math Biol 29:315–338

    Article  MathSciNet  Google Scholar 

  • Cantrell RS, Cosner C (2003) Spatial ecology via reaction-diffusion equations. Wiley, Hoboken

    MATH  Google Scholar 

  • Chen S, Shi J (2020) Asymptotic profiles of basic reproduction number for epidemic spreading in heterogeneous environment. SIAM J Appl Math 80:1247–1271

    Article  MathSciNet  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz AJ (1990) On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous population. J Math Biol 28:365–382

    Article  MathSciNet  Google Scholar 

  • Ge J, Lei C, Lin Z (2017) Reproduction numbers and the expanding fronts for a diffusion-advection SIS model in heterogeneous time-periodic environment. Nonlinear Anal Real World Appl 33:100–120

    Article  MathSciNet  Google Scholar 

  • Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  • Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kim KI, Lin Z, Zhang Q (2013) An SIR epidemic model with free boundary. Nonlinear Anal Real World Appl 14:1992–2001

    Article  MathSciNet  Google Scholar 

  • Lou Y, Zhao X-Q (2011) A reaction-diffusion malaria model with incubation period in the vector population. J Math Biol 62:543–568

    Article  MathSciNet  Google Scholar 

  • Magal P, Webb GF, Wu Y (2019) On the basic reproduction number of reaction-diffusion epidemic models. SIAM J. Appl. Math. 79:284–304

    Article  MathSciNet  Google Scholar 

  • Mukandavire Z, Liao S, Wang J, Gaff H, Smith DL, Morris JG (2011) Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe. Proc. Nat. Acad. Sci. USA 108:8767–8772

    Article  Google Scholar 

  • Peng R, Zhao X-Q (2012) A reaction-diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 25:1451–1471

    Article  MathSciNet  Google Scholar 

  • Posny D, Wang J (2014) Modeling cholera in periodic environments. J Biol Dyn 8(1):1–19

    Article  MathSciNet  Google Scholar 

  • Rinaldo A, Bertuzzo E, Mari L, Righetto L, Blokesch M, Gatto M, Casagrandi R, Murray M, Vesenbeckh SM, Rodriguez-Iturbe I (2012) Reassessment of the 2010–2011 Haiti cholera outbreak and rainfall-driven multiseason projections. Proc Nat Acad Sci USA 109:6602–6607

    Article  Google Scholar 

  • Richtmyer RD, Morton KW (1994) Difference methods for initial-value problems, 2nd edn. Krieger Publication Company, Malabar

    MATH  Google Scholar 

  • Saad Y (2011) Numerical methods for large eigenvalue problems, Revised edn. SIAM, Philadelphia

    Book  Google Scholar 

  • Sauty JP (1980) An analysis of hydrodispersive transfer in aquifers. Water Resour Res 16:145–158

    Article  Google Scholar 

  • Song P, Lou Y, Xiao Y (2019) A spatial SEIRS reaction-diffusion model in heterogeneous environment. J Differ Equ 267:5084–5114

    Article  MathSciNet  Google Scholar 

  • Sposito GW, Jury WA, Gupta VK (1986) Fundamental problems in the stochastic convection-dispersion model of solute transport in aquifer and field soils. Water Resour Res 22:77–88

    Article  Google Scholar 

  • Taylor GI (1953) Dispersion of solute matter in solvent flowing through a tube. Proc R Soc Ser A 219:186–203

    Google Scholar 

  • Thieme HR (2009) Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J Appl Math 70:188–211

    Article  MathSciNet  Google Scholar 

  • Thomas JW (1995) Numerical partial differential equations: finite difference methods. Springer, New York

    Book  Google Scholar 

  • Tien JH, Earn DJ (2010) Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bull Math Biol 72:1506–1533

    Article  MathSciNet  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  Google Scholar 

  • Wang F-B, Shi J, Zou X (2015) Dynamics of a host-pathogen system on a bounded spatial domain. Commun Pure Appl Anal 14:2535–2560

    Article  MathSciNet  Google Scholar 

  • Wang X, Gao D, Wang J (2015) Influence of human behavior on cholera dynamics. Math Biosci 267:41–52

    Article  MathSciNet  Google Scholar 

  • Wang X, Posny D, Wang J (2016) A reaction-convection-diffusion model for cholera spatial dynamics. Discrete Contin Dyn Syst Ser B 21:2785–2809

    Article  MathSciNet  Google Scholar 

  • Wang W, Zhao X-Q (2012) Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J Appl Dyn Syst 11:1652–1673

    Article  MathSciNet  Google Scholar 

  • Wu Y, Zou X (2018) Dynamics and profile of a diffusive host-pathogen system with distinct dispersal rates. J Differ Equ 264:4989–5024

    Article  MathSciNet  Google Scholar 

  • Yamazaki K, Wang X (2016) Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete Contin Dyn Syst Ser B 21:1297–1316

    Article  MathSciNet  Google Scholar 

  • Yang C, Lolika P, Mushayabasa S, Wang J (2017) Modeling the spatiotemporal variations in brucellosis transmission. Nonlinear Anal Real World Appl 38:49–67

    Article  MathSciNet  Google Scholar 

  • Yu X, Zhao X-Q (2016) A nonlocal spatial model for Lyme disease. J Differ Equ 261:340–372

    Article  MathSciNet  Google Scholar 

  • Zhao L, Wang Z-C, Ruan S (2018) Traveling wave solutions in a two-group SIR epidemic model with constant recruitment. J Math Biol 77:1871–1915

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Institutes of Health under Grant Number 1R15GM131315. The authors are grateful to the two anonymous referees for their helpful comments that have significantly improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Wang, J. Basic Reproduction Numbers for a Class of Reaction-Diffusion Epidemic Models. Bull Math Biol 82, 111 (2020). https://doi.org/10.1007/s11538-020-00788-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00788-x

Keywords

Navigation