Skip to main content

Modeling the Role of Feedback in the Adaptive Response of Bacterial Quorum Sensing

Abstract

Bacterial quorum sensing (QS) is a form of intercellular communication that relies on the production and detection of diffusive signaling molecules called autoinducers. Such a mechanism allows the bacteria to track their cell density in order to regulate group behavior, such as biofilm formation and bioluminescence. In a number of bacterial QS systems, including V. harveyi, multiple signaling pathways are integrated into a single phosphorylation–dephosphorylation cycle. In this paper, we propose a weight control mechanism, in which QS uses feedback loops to ‘decode’ the integrated signals by actively changing the sensitivity in different pathways. We first use a slow/fast analysis to reduce a single-cell model to a planar dynamical system involving the concentrations of phosphorylated signaling protein LuxU and a small non-coding RNA. In addition to identifying the weight control mechanism, we show that adding a feedback loop can lead to a bistable QS response in certain parameter regimes. We then combine the slow/fast analysis with a contraction mapping theorem in order to reduce a population model to an effective single-cell model, and show how the weight control mechanism allows bacteria to have a finer discrimination of their social and physical environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Bressloff PC (2016) Ultrasensitivity and noise amplification in a model of V. harveyi quorum sensing. Phys Rev E 93:062418

    Article  Google Scholar 

  2. Cornforth DM, Popat R, McNally L, Gurney J, Scott-Phillips DM, Ivens A, Diggle SP, Brown SP (2014) Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. Proc Natl Acad Sci USA 111:4280–4284

    Article  Google Scholar 

  3. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of bacterial biofilm. Science 280:295–298

    Article  Google Scholar 

  4. Dunlap PV (1999) Quorum regulation of luminescence in Vibrio fischeri. J Mol Microbiol Biotechnol 1:5–12

    Google Scholar 

  5. Fan G, Bressloff PC (2017) Population model of quorum sensing with multiple parallel pathways. Bull Math Biol 79:2599–2626

    MathSciNet  Article  MATH  Google Scholar 

  6. Fuqua C, Winans SC, Greenberg EP (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50:727–751

    Article  Google Scholar 

  7. Ge H, Qian M (2008) Sensitivity amplification in the phosphorylation-dephosphorylation cycle: nonequilibrium steady states, chemical master equation and temporal cooperativity. J Chem Phys 129:015104

    Article  Google Scholar 

  8. Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA 78:684–6844

    MathSciNet  Article  Google Scholar 

  9. Goryachev AB (2009) Design principles of the bacterial quorum sensing gene networks. WIRE Syst Biol Med 1:45–60

    Article  Google Scholar 

  10. Haseltine EL, Arnold FH (2008) Implications of rewiring bacterial quorum sensing. Appl Environ Microbiol 74(2):437–445

    Article  Google Scholar 

  11. Hense BA, Kuttler C, Muller J, Rothballer M, Hartmann A, Kreft JU (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239

    Article  Google Scholar 

  12. Hunter GAM, Guevara Vasquez F, Keener JP (2013) A mathematical model and quantitative comparison of the small RNA circuit in the Vibrio harveyi and Vibrio cholerae quorum sensing systems. Phys Biol 10:046007

    Article  Google Scholar 

  13. Jung SA, Hawver LA, Ng WL (2016) Parallel quorum sensing signaling pathways in Vibrio cholerae. Curr Genet 62(2):255–260

    Article  Google Scholar 

  14. Lenz DDH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:69–82

    Article  Google Scholar 

  15. Lohmiller W, Slotine JJE (1998) On contraction analysis for non-linear systems. Automatica 34:683–696

    MathSciNet  Article  MATH  Google Scholar 

  16. Long T, Tu KC, Wang Y, Mehta P, Ong NP, Bassler BL, Wingreen NS (2009) Quantifying the integration of quorum-sensing signals with single-cell resolution. PLoS Biol 7(3):e1000068

    Article  Google Scholar 

  17. Miyashiro T, Ruby EG (2012) Shedding light on bioluminescence regulation in Vibrio fischeri. Mol Microbiol 84:795–806

    Article  Google Scholar 

  18. Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    Article  Google Scholar 

  19. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 1:577–588

    Google Scholar 

  20. Popat R, Cornforth DM, McNally L, Brown SP (2015) Collective sensing and collective responses in quorum-sensing bacteria. J R Soc Interface 12:20140882

    Article  Google Scholar 

  21. Qian H (2012) Cooperativity in cellular biochemical processes. Annu Rev Biophys 41:179–204

    Article  Google Scholar 

  22. Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365–370

    Article  Google Scholar 

  23. Russo G, Slotine JJE (2010) Global convergence of quorum sensing network. Phys Rev E 82:041919

    MathSciNet  Article  Google Scholar 

  24. Seger J, Brockman H (1987) What is bet-hedging? In: Harvey PH, Partridge L (eds) Oxford surveys in evolutionary biology, vol 4. Oxford University Press, Cambridge, pp 182–211

    Google Scholar 

  25. Swem LR, Swem DL, Wingreen NS, Bassler BL (2008) Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi. Cell 134:461–473

    Article  Google Scholar 

  26. Teng SW, Schaffer JN, Tu KC, Mehta P, Lu W, Ong NP, Bassler BL, Wingreen NS (2011) Active regulation of receptor ratios controls integration of quorum-sensing signals in Vibrio harveyi. Mol Syst Biol 7:491

    Article  Google Scholar 

  27. Tu KC, Long T, Svenningsen SL, Wingreen NS, Bassler BL (2010) Negative feedback loops involving small regulatory RNAs precisely control the Vibrio harveyi quorum-sensing response. Mol Cell 37:567–579

    Article  Google Scholar 

  28. Wei Y, Ng WL, Cong J, Bassler BL (2012) Ligand and antagonist driven regulation of the Vibrio cholerae quorum-sensing receptor CqsS. Mol Microbiol 83:1095–1108

    Article  Google Scholar 

  29. West SA, Winzer K, Gardner A, Diggle SP (2012) Quorum sensing and the confusion about diffusion. Trends Microbiol 20:586–594

    Article  Google Scholar 

  30. Williams JW, Cui X, Levchenko A, Stevens AM (2008) Robust and sensitive control of a quorum sensing circuit by two interlocked feedback loops. Mol Syst Biol 4:234

    Article  Google Scholar 

  31. Zhu J, Chai Y, Zhong Z, Li S, Winans SC (2003) Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol 69(11):6949–6953

    Article  Google Scholar 

Download references

Acknowledgements

PCB was supported by the National Science Foundation (DMS-1613048). GF was supported by the National Science Foundation (DMS-RTG 1148230).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul C. Bressloff.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this appendix, we show that a sufficient condition for the equilibrium of the single-cell model to be unique is given by Eq. (40). We already showed the uniqueness for the cases of \(u_1>u_2\) and \(u_1=u_2\), in Sect. 2.3. Next, we will work on the case of \(u_1<u_2\). Since the equilibrium satisfies \(f_1(\phi )=f_2(\phi )\), it follows after some algebra that

$$\begin{aligned} \frac{u_2-h(\phi )}{u_2+1}&=\Bigg [\frac{\phi C_2E_q}{(1+\eta -\eta \xi )\phi +\eta \xi }+ D_2\Bigg ]\frac{h(\phi )-u_1}{1+u_1}\nonumber \\&\equiv f_3(\phi ). \end{aligned}$$
(A.1)

Note that

$$\begin{aligned} \frac{\phi C_2E_q}{(1+\eta -\eta \xi )\phi +\eta \xi }+ D_2=\frac{\phi C_2E_q}{(1+\eta )\phi +\eta \xi (1-\phi )}+ D_2>0. \end{aligned}$$
(A.2)

Here, because the two sides of (A.1) have to be the same sign, we have the following cases,

$$\begin{aligned} u_1<h(\phi )<u_2,\quad u_1=h(\phi )=u_2\quad \text {or}\quad u_1>h(\phi )>u_2. \end{aligned}$$
(A.3)

Since we are studying the case \(u_1<u_2\), it follows that \(u_1<h(\phi )<u_2\), which implies \(f_3(\phi )>0\).

By some algebra on Eq. (A.1), we get

$$\begin{aligned} u_2=f_4(\phi )\equiv \frac{h(\phi )+f_3(\phi )}{1-f_3(\phi )}. \end{aligned}$$
(A.4)

Recall from Eq. (33) that \(h(\phi )\ge 0\). Since the AI concentration \(u_2\ge 0\), we have \(1-f_3(\phi )>0\). Uniqueness is guaranteed by the monotonicity of the function \(f_4(\phi )\). By taking the derivative with respect to \(\phi \) of \(u_2=f_4(\phi )\), we find

$$\begin{aligned} f_4^\prime =\frac{\mathrm{d}f_4}{\mathrm{d}\phi }=\frac{h^\prime (1-f_3)+f_3^\prime (1+h)}{(1-f_3)^2}, \end{aligned}$$
(A.5)

where,

$$\begin{aligned} h^\prime&=\frac{\mathrm{d}h}{\mathrm{d}\phi }=-\frac{Q(\phi -1)^2+K\phi ^2+KQ}{[\phi ^2-(1+K)\phi ]^2}<0, \end{aligned}$$
(A.6a)
$$\begin{aligned} f_3^\prime&=\frac{\mathrm{d}f_3}{\mathrm{d}\phi }=\frac{C_2 E_q \eta \xi }{[(1+\eta -\eta \xi )\phi +\eta \xi ]^2}\frac{h(\phi )-u_1}{1+u_1}\nonumber \\&\quad +\Bigg (\frac{\phi C_2E_q}{(1+\eta -\eta \xi )\phi +\eta \xi }+ D_2\Bigg )\frac{h^\prime (\phi )}{1+u_1}. \end{aligned}$$
(A.6b)

Since \(0<f_3<1\) and \(1+h>0\), one sufficient condition for \(f_4^\prime <0\) to be true is having \(f_3^\prime <0\). Also,

$$\begin{aligned} f_3^\prime&<\frac{ C_2E_q \eta \xi }{[(1+\eta -\eta \xi )\phi +\eta \xi ]^2}\frac{h(\phi )}{1+u_1}+\frac{\phi C_2E_q}{(1+\eta -\eta \xi )\phi +\eta \xi }\frac{h^\prime (\phi )}{1+u_1},\nonumber \\&=\frac{ C_2E_q (1+\eta )\phi ^2h^\prime (\phi )}{[(1+\eta -\eta \xi )\phi +\eta \xi ]^2(1+u_1)} +\frac{ C_2E_q \eta \xi (h(\phi )-h^\prime (\phi )\phi ^2+\phi h^\prime (\phi ))}{[(1+\eta -\eta \xi )\phi +\eta \xi ]^2(1+u_1)},\nonumber \\&<\frac{C_2 E_q \eta \xi }{[(1+\eta -\eta \xi )\phi +\eta \xi ]^2(1+u_1)}[h(\phi )-h^\prime (\phi )\phi ^2+\phi h^\prime (\phi )]. \end{aligned}$$
(A.7)

Since \(0\le \phi \le 1\), we require \(h(\phi )-h^\prime (\phi )\phi ^2+\phi h^\prime (\phi )<0\). By direct substitution, we have

$$\begin{aligned} h(\phi )-h^\prime (\phi )\phi ^2+\phi h^\prime (\phi )=\frac{(\phi -1)[(1+Q+K)\phi -(1+K)]}{(\phi -1-K)^2}. \end{aligned}$$
(A.8)

Therefore, Eq. (40) is a sufficient condition for the response to be unique.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, G., Bressloff, P.C. Modeling the Role of Feedback in the Adaptive Response of Bacterial Quorum Sensing. Bull Math Biol 81, 1479–1505 (2019). https://doi.org/10.1007/s11538-019-00570-8

Download citation

Keywords

  • Quorum sensing
  • Cell signaling
  • Phosphorylation–dephosphorylation cycles
  • Feedback pathways
  • Intercellular communication