Alekseyev MA, Pevzner PA (2008) Multi-break rearrangements and chromosomal evolution. Theor Comput Sci 395(2–3):193–202
MathSciNet
MATH
Article
Google Scholar
Bafna V, Pevzner PA (1993) Genome rearrangements and sorting by reversals. In: Proceedings of 1993 IEEE 34th annual foundations of computer science, pp 148–157
Bafna V, Pevzner PA (1998) Sorting by transpositions. SIAM J Discrete Math 11(2):224–240
MathSciNet
MATH
Article
Google Scholar
Baudet C, Dias U, Dias Z (2015) Sorting by weighted inversions considering length and symmetry. BMC Bioinform 16(19):S3
Article
Google Scholar
Bergeron A, Mixtacki J, Stoye J (2006) A unifying view of genome rearrangements. In: Bücher P, Moret BME (eds) Algorithms in bioinformatics. Springer, Berlin, pp 163–173
Chapter
Google Scholar
Bhatia S, Egri-Nagy A, Francis AR (2015) Algebraic double cut and join. J Math Biol 71(5):1149–1178
MathSciNet
MATH
Article
Google Scholar
Caprara A (1997) Sorting by reversals is difficult. In: Proceedings of the first annual international conference on computational molecular biology. ACM, pp 75–83
Chen T, Skiena SS (1996) Sorting with fixed-length reversals. Discrete Appl Math 71(1):269–295
MathSciNet
MATH
Article
Google Scholar
Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14(7):1394–1403
Article
Google Scholar
Dias Z, Meidanis J (2001) Genome rearrangements distance by fusion, fission, and transposition is easy. In: Proceedings of the 8th international symposium on string processing and information retrieval (SPIRE2001), SPIRE 2001. Citeseer, pp 250–253
Dobzhansky T, Sturtevant AH (1938) Inversions in the chromosomes of Drosophila pseudoobscura. Genetics 23(1):28
Google Scholar
Doignon JP, Labarre A (2007) On Hultman numbers. J Integer Seq 10:1–13
Google Scholar
Egri-Nagy A, Francis AR, Gebhardt V (2014a) Bacterial genomics and computational group theory: the BioGAP package for GAP. In: International congress on mathematical software. Springer, Berlin pp 67–74
Egri-Nagy A, Gebhardt V, Tanaka MM, Francis AR (2014b) Group-theoretic models of the inversion process in bacterial genomes. J Math Biol 69(1):243–265
MathSciNet
MATH
Article
Google Scholar
Feijão P, Meidanis J (2013) Extending the algebraic formalism for genome rearrangements to include linear chromosomes. IEEE/ACM Trans Comput Biol Bioinform 10(4):819–831
Article
Google Scholar
Hannenhalli S, Pevzner PA (1995) Transforming men into mice (polynomial algorithm for genomic distance problem). In: Proceedings of 1995 IEEE 36th annual foundations of computer science, pp 581–592
Hannenhalli S, Pevzner PA (1999) Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. JACM 46(1):1–27
MathSciNet
MATH
Article
Google Scholar
Huang Y-L, Huang C-C, Tang CY, Lu CL (2010) An improved algorithm for sorting by block-interchanges based on permutation groups. Inf Process Lett 110(8–9):345–350. https://doi.org/10.1016/j.ipl.2010.03.003. ISSN 00200190
Kececioglu JD, Ravi R (1995) Of mice and men: algorithms for evolutionary distances between genomes with translocation. In: Symposium on discrete algorithms, vol 604
Labarre A (2013) Lower bounding edit distances between permutations. SIAM J Discrete Math 27(3):1410–1428. https://doi.org/10.1137/13090897X. ISSN 0895-4801
Labarre A, Cibulka J (2011) Polynomial-time sortable stacks of burnt pancakes. Theor Comput Sci 412(8–10):695–702. https://doi.org/10.1016/j.tcs.2010.11.004. ISSN 03043975
Meidanis J, Dias Z (2000) An alternative algebraic formalism for genome rearrangements. In: Sankoff D, Nadeau JH (eds) Comparative genomics. Springer, Berlin, pp 213–223
Chapter
Google Scholar
Meyer M, Munzner T, Pfister H (2009) MizBee: a multiscale synteny browser. IEEE Trans Vis Comput Graphics 15(6):897–904
Article
Google Scholar
Moulton V, Steel M (2012) The ‘Butterfly effect’ in Cayley graphs with applications to genomics. J Math Biol 65(6–7):1267-84. https://doi.org/10.1007/s00285-011-0498-1. ISSN 1432-1416
Revanna KV, Munro D, Gao A, Chiu C-C, Pathak A, Dong Q (2012) A web-based multi-genome synteny viewer for customized data. BMC Bioinform 13(1):190
Article
Google Scholar
Sankoff D, Leduc G, Antoine N, Paquin B, Lang BF, Cedergren R (1992) Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc Natl Acad Sci 89(14):6575–6579
Article
Google Scholar
Serdoz S, Egri-Nagy A, Sumner J, Holland BR, Jarvis PD, Tanaka MM, Francis AR (2017) Maximum likelihood estimates of pairwise rearrangement distances. J Theor Biol 423:31–40
MathSciNet
MATH
Article
Google Scholar
Solomon A, Sutcliffe P, Lister R (2003) Sorting circular permutations by reversal. In: Workshop on algorithms and data structures, pp 319–328. Springer, Berlin
Sumner JG, Jarvis PD, Francis AR (2017) A representation-theoretic approach to the calculation of evolutionary distance in bacteria. J Phys A: Math Theor 50(33):335601
MathSciNet
MATH
Article
Google Scholar
Swenson KM, Simonaitis P, Blanchette M (2016) Models and algorithms for genome rearrangement with positional constraints. Algorithms Mol Biol 11(1):13
Article
Google Scholar
Tannier E, Zheng C, Sankoff D (2009) Multichromosomal median and halving problems under different genomic distances. BMC Bioinform 10:120. https://doi.org/10.1186/1471-2105-10-120. ISSN 1471-2105
Watterson GA, Ewens WJ, Hall TE, Morgan A (1982) The chromosome inversion problem. J Theor Biol 99(1):1–7
Article
Google Scholar
Yancopoulos S, Attie O, Friedberg R (2005) Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16):3340–3346
Article
Google Scholar