Bulletin of Mathematical Biology

, Volume 80, Issue 7, pp 1900–1936 | Cite as

Signal Propagation in Sensing and Reciprocating Cellular Systems with Spatial and Structural Heterogeneity

  • Arran Hodgkinson
  • Gilles Uzé
  • Ovidiu Radulescu
  • Dumitru Trucu
Original Article
  • 46 Downloads

Abstract

Sensing and reciprocating cellular systems (SARs) are important for the operation of many biological systems. Production in interferon (IFN) SARs is achieved through activation of the Jak-Stat pathway, and downstream upregulation of IFN regulatory factor (IRF)-7 and IFN transcription, but the role that high- and low-affinity IFNs play in this process remains unclear. We present a comparative between a minimal spatio-temporal partial differential equation model and a novel spatio-structural-temporal (SST) model for the consideration of receptor, binding, and metabolic aspects of SAR behaviour. Using the SST framework, we simulate single- and multi-cluster paradigms of IFN communication. Simulations reveal a cyclic process between the binding of IFN to the receptor, and the consequent increase in metabolism, decreasing the propensity for binding due to the internal feedback mechanism. One observes the effect of heterogeneity between cellular clusters, allowing them to individualise and increase local production, and within clusters, where we observe ‘subpopular quiescence’; a process whereby intra-cluster subpopulations reduce their binding and metabolism such that other such subpopulations may augment their production. Finally, we observe the ability for low-affinity IFN to communicate a long range signal, where high affinity cannot, and the breakdown of this relationship through the introduction of cell motility. Biological systems may utilise cell motility where environments are unrestrictive and may use fixed system, with low-affinity communication, where a localised response is desirable.

Keywords

Population dynamics Structured models Interferon signalling 

Mathematics Subject Classification

22E46 53C35 57S20 

Notes

Acknowledgements

AH would like to acknowledge the PhD training funding provided by the École Doctorale I2S de l’Université de Montpellier. OR thanks the programme Emergence of the Canceropole Grand Sud-Ouest and the Labex EpigenMed for supporting this research. dt would like to acknowledge the position of Invited Distinguished Research Scholar and associated funding awarded by the Université de Montpellier (France), for the period 28 Nov. to 14 Dec. 2016.

References

  1. Arimoto Ki, Löchte S, Stoner SA, Burkart C, Zhang Y, Miyauchi S, Wilmes S, Fan JB, Heinisch JJ, Li Z, Yan M, Sandra Pellegrini S, Colland F, Piehler J, Zhang DE (2017) Stat2 is an essential adaptor in usp18-mediated suppression of type i interferon signaling. Nat Struct Mol Biol 24(3):279–289CrossRefGoogle Scholar
  2. Barkai N, Rose MD, Wingreen NS (1998) Protease helps yeast find mating partners. Nature 396(6710):422CrossRefGoogle Scholar
  3. Bekkal Brikci F, Clairambault J, Ribba B, Perthame B (2008) An age-and-cyclin-structured cell population model for healthy and tumoral tissues. J Math Biol 57(1):91–110.  https://doi.org/10.1007/s00285-007-0147-x MathSciNetCrossRefMATHGoogle Scholar
  4. Clarke BL (1988) Stoichiometric network analysis. Cell Biochem Biophys 12(1):237–253Google Scholar
  5. Domschke P, Trucu D, Gerisch A, Chaplain MAJ (2017) Structured models of cell migration incorporating molecular binding processes. J Math Biol 75(6–7):1517–1561MathSciNetCrossRefMATHGoogle Scholar
  6. François P, Altan-bonnet G (2016) The case for absolute ligand discrimination: modeling information processing and decision by immune T cells. J Stat Phys 162(5):1130–1152.  https://doi.org/10.1007/s10955-015-1444-1 MathSciNetCrossRefMATHGoogle Scholar
  7. François-Newton V, de Freitas Almeida GM, Payelle-Brogard B, Monneron D, Pichard-Garcia L, Piehler J, Pellegrini S, Uzé G (2011) Usp18-based negative feedback control is induced by type i and type iii interferons and specifically inactivates interferon \(\alpha \) response. PLoS ONE 6(7):e22,200CrossRefGoogle Scholar
  8. Gascoigne NR, Zal T, Alam SM (2001) T-cell receptor binding kinetics in t-cell development and activation. Expert Rev Mol Med 3(6):1–17CrossRefGoogle Scholar
  9. Gavutis M, Lata S, Lamken P, Müller P, Piehler J (2005) Lateral ligand-receptor interactions on membranes probed by simultaneous fluorescence-interference detection. Biophys J 88(6):4289–4302.  https://doi.org/10.1529/biophysj.104.055855 CrossRefGoogle Scholar
  10. Gavutis M, Jaks E, Lamken P, Piehler J (2006) Determination of the two-dimensional interaction rate constants of a cytokine receptor complex. Biophys J 90(9):3345–3355.  https://doi.org/10.1529/biophysj.105.072546 CrossRefGoogle Scholar
  11. Grant BD, Donaldson JG (2009) Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10(9):597CrossRefGoogle Scholar
  12. Gurdon JB (1988) A community effect in animal development. Nature 336(6201):772–774CrossRefGoogle Scholar
  13. Haller O, Kochs G, Weber F (2006) The interferon response circuit : induction and suppression by pathogenic viruses. Virology 344:119–130.  https://doi.org/10.1016/j.virol.2005.09.024 CrossRefGoogle Scholar
  14. Hart Y, Reich-Zeliger S, Antebi YE, Zaretsky I, Mayo AE, Alon U, Friedman N (2014) Paradoxical signaling by a secreted molecule leads to homeostasis of cell levels. Cell 158(5):1022–1032.  https://doi.org/10.1016/j.cell.2014.07.033 CrossRefGoogle Scholar
  15. Henrique D, Hirsinger E, Adam J, Le Roux I, Pourquié O, Ish-Horowicz D, Lewis J (1997) Maintenance of neuroepithelial progenitor cells by delta-notch signalling in the embryonic chick retina. Curr Biol 7(9):661–670CrossRefGoogle Scholar
  16. Hodgkinson A, Chaplain MAJ, Domschke P, Trucu D (2018) Computational approaches and analysis for a spatio-structural-temporal invasive carcinoma model. Bull Math Biol.  https://doi.org/10.1007/s11538-018-0396-4 MathSciNetMATHGoogle Scholar
  17. Hoyos E, Kim K, Milloz J, Barkoulas M, Pénigault JB, Munro E, Félix MA (2011) Quantitative variation in autocrine signaling and pathway crosstalk in the caenorhabditis vulval network. Curr Biol 21(7):527–538CrossRefGoogle Scholar
  18. Kersh GJ, Kersh EN, Fremont DH, Allen PM, Louis S (1998) High- and low-potency ligands with similar affinities for the TCR : the importance of kinetics in TCR signaling. Immunity 9:817–826CrossRefGoogle Scholar
  19. Lavoie TB, Kalie E, Crisafulli-cabatu S, Abramovich R, Digioia G, Moolchan K, Pestka S, Schreiber G (2011) Cytokine Binding and activity of all human alpha interferon subtypes. Cytokine 56(2):282–289.  https://doi.org/10.1016/j.cyto.2011.07.019 CrossRefGoogle Scholar
  20. Lin R, Heylbroeck C, Pitha PM, Hiscott J (1998) Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 18(5):2986–2996.  https://doi.org/10.1128/MCB.18.5.2986 CrossRefGoogle Scholar
  21. Löchte S, Waichman S, Beutel O, You C, Piehler J (2014) Live cell micropatterning reveals the dynamics of signaling complexes at the plasma membrane. J Cell Biol 207(3):407–418.  https://doi.org/10.1083/jcb.201406032 CrossRefGoogle Scholar
  22. Lorz A, Perthame B, Lorenzi T, Hochberg ME, Clairambault J (2012) Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapy. ESAIM. Math Model Numer Anal 47:377–399.  https://doi.org/10.1051/m2an/2012031 CrossRefMATHGoogle Scholar
  23. Lorz A, Lorenzi T, Clairambault J, Escargueil A, Perthame B (2015) Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors. Bull Math Biol 77:1–22MathSciNetCrossRefMATHGoogle Scholar
  24. Mackay CR (1996) Chemokine receptors and t cell chemotaxis. J Exp Med 184(3):799–802CrossRefGoogle Scholar
  25. Maire T, Youk H (2015) Molecular-level tuning of cellular autonomy controls the collective behaviors of cell populations article molecular-level tuning of cellular autonomy controls the collective behaviors of cell populations. Cell Syst 1:349–360.  https://doi.org/10.1016/j.cels.2015.10.012 CrossRefGoogle Scholar
  26. Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43(1):197–222.  https://doi.org/10.1146/annurev-genet-102108-134304 CrossRefGoogle Scholar
  27. Olimpio EP, Youk H (2017) Out-of-equilibrium statistical dynamics of spatial pattern generating cellular automata Kavli Institute of Nanoscience , Departments of Applied Physics and Bionanoscience , Delft University of Technology , Delft 2629HZ , The Netherlands Correspondence to bioRxivGoogle Scholar
  28. Oyler-Yaniv A, Oyler-Yaniv J, Whitlock BM, Liu Z, Germain RN, Huse M, Altan-Bonnet G, Krichevsky O (2017) A tunable diffusion–consumption mechanism of cytokine propagation enables plasticity in cell-to-cell communication in the immune system. Immunity 46(4):609–620.  https://doi.org/10.1016/j.immuni.2017.03.011 CrossRefGoogle Scholar
  29. Pedersen MG, Bertram R, Sherman A (2005) Intra-and inter-islet synchronization of metabolically driven insulin secretion. Biophys J 89(1):107–119CrossRefGoogle Scholar
  30. Randall G, Limin Chen L, Panis M, Fischer AK, Lindenbach BD, Sun J, Heathcote J, Rice CM, Edwards AM, Mcgilvray ID (2006) Silencing of usp18 potentiates the antiviral activity of interferon against hepatitis c virus infection. Gastroenterology 131:1584–1591CrossRefGoogle Scholar
  31. Samuel CE (2001) Antiviral actions of interferons.pdf. Clin Microbiol Rev 14(4):778–809.  https://doi.org/10.1128/CMR.14.4.778 CrossRefGoogle Scholar
  32. Schilling CH, Letscher D, Palsson BØ (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203(3):229–248CrossRefGoogle Scholar
  33. Schreiber G, Piehler J (2015) The molecular basis for functional plasticity in type I interferon signaling. Trends Immunol 36(3):139–149.  https://doi.org/10.1016/j.it.2015.01.002 CrossRefGoogle Scholar
  34. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD (1998) How cells respond to interferons. Annu Rev Biochem 67:227–64.  https://doi.org/10.1146/annurev.biochem.67.1.227 CrossRefGoogle Scholar
  35. Trucu D, Domschke P, Gerisch A, Chaplain MAJ (2017) Multiscale computational modelling and analysis of cancer invasion. In: Springer Lecture Notes in Mathematics, CIME Foundation Subseries, vol 2167, Springer, pp 275–310 (2017)Google Scholar
  36. Viola A, Lanzavecchia A (1996) T cell activation determined by t cell receptor number and tunable thresholds. Science 273(5271):104–106CrossRefGoogle Scholar
  37. Wilmes S, Beutel O, Li Z, Francois-Newton V, Richter CP, Janning D, Kroll C, Hanhart P, Hötte K, You C, Uzé G, Pellegrini S, Piehler J (2015) Receptor dimerization dynamics as a regulatory valve for plasticity of type i interferon signaling. J Cell Biol 209(4):579–593CrossRefGoogle Scholar
  38. Youk H, Lim WA (2014) Secreting and sensing the same molecule allows cells to achieve versatile social behaviors. Science (New York, NY) 343(6171):1242,782.  https://doi.org/10.1126/science.1242782 CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2018

Authors and Affiliations

  1. 1.DIMNP - UMR 5235Université de MontpellierMontpellierFrance
  2. 2.Division of MathematicsUniversity of DundeeDundeeScotland, UK

Personalised recommendations