Forecasting and Uncertainty Quantification Using a Hybrid of Mechanistic and Non-mechanistic Models for an Age-Structured Population Model

  • John Lagergren
  • Amanda Reeder
  • Franz Hamilton
  • Ralph C. Smith
  • Kevin B. Flores
Original Article
  • 18 Downloads

Abstract

In this paper, we present a new method for the prediction and uncertainty quantification of data-driven multivariate systems. Traditionally, either mechanistic or non-mechanistic modeling methodologies have been used for prediction; however, it is uncommon for the two to be incorporated together. We compare the forecast accuracy of mechanistic modeling, using Bayesian inference, a non-mechanistic modeling approach based on state space reconstruction, and a novel hybrid methodology composed of the two for an age-structured population data set. The data come from cannibalistic flour beetles, in which it is observed that the adults preying on the eggs and pupae result in non-equilibrium population dynamics. Uncertainty quantification methods for the hybrid models are outlined and illustrated for these data. We perform an analysis of the results from Bayesian inference for the mechanistic model and hybrid models to suggest reasons why hybrid modeling methodology may enable more accurate forecasts of multivariate systems than traditional approaches.

Keywords

State space reconstruction Uncertainty quantification Structured population model Forecasting 

Notes

Acknowledgements

The research was partially supported by Grants RTG/DMS-1246991 and DMS-1514929 from the National Science Foundation.

Supplementary material

11538_2018_421_MOESM1_ESM.pdf (118 kb)
Supplementary material 1 (pdf 118 KB)

References

  1. Adoteye K, Banks HT, Flores KB (2015) Optimal design of non-equilibrium experiments for genetic network interrogation. Appl Math Lett 40:84–89MathSciNetCrossRefMATHGoogle Scholar
  2. Banks HT, Tran HT (2009) Mathematical and experimental modeling of physical and biological processesGoogle Scholar
  3. Banks HT, Hu S, Thompson WC (2014) Modeling and inverse problems in the presence of uncertainty. CRC Press, Boca RatonMATHGoogle Scholar
  4. Banks HT, Banks JE, Link K, Rosenheim JA, Ross C, Tillman KA (2015) Model comparison tests to determine data information content. Appl Math Lett 43:10–18MathSciNetCrossRefMATHGoogle Scholar
  5. Banks HT, Baraldi R, Flores K, McChesney C, Poag L (2015) Uncertainty quantification in modeling HIV viral mechanics. Math Biosci Eng: MBE 12(5):937–964MathSciNetCrossRefMATHGoogle Scholar
  6. Billings SA (2013) Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains. Wiley, LondonCrossRefMATHGoogle Scholar
  7. Casdagli M (1989) Nonlinear prediction of chaotic time series. Phys D 35(3):335–356MathSciNetCrossRefMATHGoogle Scholar
  8. Cheng H, Tan PN, Gao J, Scripps J (2006) Multistep-ahead time series prediction. Lecture Notes in Computer Science: Advances in Knowledge Discovery and Data Mining, 3918 (765–774)Google Scholar
  9. Cintrón-Arias A, Banks HT, Capaldi A, Lloyd AL (2009) A sensitivity matrix based methodology for inverse problem formulation. J Inverse Ill-posed Probl 17(6):545–564MathSciNetCrossRefMATHGoogle Scholar
  10. Cobelli C, DiStefano JJ (1980) Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. Am J Physiol Regul Integr Comp Physiol 239(1):R7–R24CrossRefGoogle Scholar
  11. Constantino RF, Desharnais RA, Cushing JM, Dennis B (1997) Chaotic dynamics in an insect population. Science 276:1881–1882CrossRefMATHGoogle Scholar
  12. De Gaetano A, Arino O (2000) Mathematical modelling of the intravenous glucose tolerance test. J Math Biol 40(2):136–168MathSciNetCrossRefMATHGoogle Scholar
  13. Dennis B, Desharnais RA, Cushing JM, Costantino RF (1995) Nonlinear demographic dynamics: mathematical models, statistical methods, and biological experiments. Ecol Monogr 65(3):261–282CrossRefGoogle Scholar
  14. DiStefano III Joseph (2015) Dynamic systems biology modeling and simulation. Academic Press, Google-Books-ID: nWoYAgAAQBAJGoogle Scholar
  15. DiStefano J (2013) Dynamic systems biology modeling and simulation. Academic Press, LondonGoogle Scholar
  16. Farmer J, Sidorowich J (1987) Predicting chaotic time series. Phys Rev Lett 59:845–848MathSciNetCrossRefGoogle Scholar
  17. Francis CRIC, Hurst RJ, Renwick JA (2003) Quantifying annual variation in catchability for commercial and research fishing. Fish Bull 101(2):293–304Google Scholar
  18. Geisser S (1993) Predictive inference. CRC Press, Google-Books-ID: wfdlBZ_iwZoCGoogle Scholar
  19. Haario H, Laine M, Mira A, Saksman E (2006) DRAM: efficient adaptive MCMC. Stat Comput 16(4):339–354MathSciNetCrossRefGoogle Scholar
  20. Hamilton F, Berry T, Sauer T (2016) Ensemble kalman filtering without a model. Phys Rev X 6:011021Google Scholar
  21. Hamilton F, Lloyd A, Flores K (2017) Hybrid modeling and prediction of dynamical systems. arXiv:1701.08141
  22. Hartig F, Dormann CF (2013) Does model-free forecasting really outperform the true model? Proc Natl Acad Sci 110(42):E3975–E3975CrossRefGoogle Scholar
  23. Hsieh C-H, Glaser SM, Lucas AJ, Sugihara G (2005) Distinguishing random environmental fluctuations from ecological catastrophes for the north pacific ocean. Nature 435(7040):336–340CrossRefGoogle Scholar
  24. Jimenez J, Moreno JA, Ruggeri GJ (1992) Forecasting on chaotic time series: a local optimal linear-reconstruction method. Phys Rev A 45(6):3553CrossRefGoogle Scholar
  25. Kugiumtzis D, Lingjærde OC, Christophersen N (1998) Regularized local linear prediction of chaotic time series. Phys D 112(3):344–360MathSciNetCrossRefMATHGoogle Scholar
  26. Laine M (2011) DRAM—delayed rejection adaptive metropolis. http://helios.fmi.fi/~lainema/dram/
  27. Meshkat N, Kuo CE, DiStefano Iii J (2014) On finding and using identifiable parameter combinations in nonlinear dynamic systems biology models and COMBOS: a novel web implementation. PLoS ONE 9(10):e110261CrossRefGoogle Scholar
  28. Olufsen MS, Ottesen JT (2013) A practical approach to parameter estimation applied to model predicting heart rate regulation. J Math Biol 67(1):39–68MathSciNetCrossRefMATHGoogle Scholar
  29. Parlos AG, Rais OT, Atiya AF (2000) Multi-step-ahead prediction using dynamic recurrent neural networks. Neural Netw 13(7):765–786CrossRefGoogle Scholar
  30. Perretti C, Munch S, Sugihara G (2013) Model-free forecasting outperforms the correct mechanistic model for simulated and experimental data. Proc Natl Acad Sci 110:5253–5257CrossRefGoogle Scholar
  31. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25(15):1923–1929CrossRefGoogle Scholar
  32. Regonda S, Rajagopalan B, Lall U, Clark M, Moon Y-I (2005) Local polynomial method for ensemble forecast of time series. Nonlinear Proc Geophys 12:397–406CrossRefGoogle Scholar
  33. Sauer T (1994) Time series prediction by using delay coordinate embedding. In: Time series prediction: forecasting the future and understanding the past, pp. 175–193. Addison WesleyGoogle Scholar
  34. Schelter B, Winterhalder M, Timmer J (2006) Handbook of time series analysis: recent theoretical developments and applications. Wiley, LondonCrossRefMATHGoogle Scholar
  35. Schroer CG, Sauer T, Ott E, Yorke JA (1998) Predicting chaos most of the time from embeddings with self-intersections. Phys Rev Lett 80(7):1410CrossRefGoogle Scholar
  36. Smith RC (2014) Uncertainty quantification: theory, implementation, and applications. SIAM, Philadelphia, OCLC: 875327904Google Scholar
  37. Smith LA (1992) Identification and prediction of low dimensional dynamics. Phys D 58(1):50–76MathSciNetCrossRefMATHGoogle Scholar
  38. Strelioff CC, Hübler AW (2006) Medium-term prediction of chaos. Phys Rev Lett 96(4):044101CrossRefGoogle Scholar
  39. Sugihara G (1994) Nonlinear forecasting for the classification of natural time series. Philos Trans R Soc Lond Ser A: Phys Eng Sci 348(1688):477–495CrossRefMATHGoogle Scholar
  40. Sugihara G, May R, Ye H, Hsieh C, Deyle E, Fogarty M, Munch S (2012) Detecting causality in complex ecosystems. Science 338(6106):496–500CrossRefMATHGoogle Scholar
  41. Sugihara G, May RM (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344(6268):734–741Google Scholar
  42. Voss H, Timmer J, Kurths J (2002) Nonlinear dynamical system identification from uncertain and indirect measurements. Int J Bif Chaos 14:1905–1924MathSciNetCrossRefMATHGoogle Scholar
  43. Ye H, Beamish RJ, Glaser SM, Grant SCH, Hsieh C, Richards LJ, Schnute JT, Sugihara G (2015) Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling. Proc Natl Acad Sci 112(13):E1569–E1576CrossRefGoogle Scholar
  44. Yuan G, Lozier M, Pratt L, Jones C, Helfrich K (2004) Estimating the predicability of an oceanic time series using linear and nonlinear methods. J Geophys Res 109:C08002Google Scholar

Copyright information

© Society for Mathematical Biology 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Center for Research in Scientific ComputationNorth Carolina State UniversityRaleighUSA

Personalised recommendations