Skip to main content

Models of Disease Vector Control: When Can Aggressive Initial Intervention Lower Long-Term Cost?

Abstract

Insecticide spraying of housing units is an important control measure for vector-borne infections such as Chagas disease. As vectors may invade both from other infested houses and sylvatic areas and as the effectiveness of insecticide wears off over time, the dynamics of (re)infestations can be approximated by \({ SIRS}\)-type models with a reservoir, where housing units are treated as hosts, and insecticide spraying corresponds to removal of hosts. Here, we investigate three ODE-based models of this type. We describe a dual-rate effect where an initially very high spraying rate can push the system into a region of the state space with low endemic levels of infestation that can be maintained in the long run at relatively moderate cost, while in the absence of an aggressive initial intervention the same average cost would only allow a much less significant reduction in long-term infestation levels. We determine some sufficient and some necessary conditions under which this effect occurs and show that it is robust in models that incorporate some heterogeneity in the relevant properties of housing units.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. We use the term “reservoir” here for a source of (re)infestation of susceptible domestic units at a fixed rate. To avoid possible confusion with the use of the term “animal reservoir” in studies of human infection by disease agents, we will write “(sylvatic) reservoir.”

  2. It was in fact called a “hysteresis-like effect” in Oduro (2016).

  3. Here “strictly” has a different meaning than in Definition 3.1, and in the multidimensional case “monotone” needs to be interpreted as “monotone in each variable.”

References

  • Abad-Franch F, Ferraz G, Campos C, Palomeque FS, Grijalva MJ, Aguilar HM, Miles MA (2010) Modeling disease vector occurrence when detection is imperfect: infestation of Amazonian palm trees by triatomine bugs at three spatial scales. PLoS Negl Trop Dis 4(3):e620. https://doi.org/10.1371/journal.pntd.0000620

  • Al-Asuoad N, Pleasant T, Shillor M, Munugala H, Coffield DJ Jr, Spagnuolo AM (2017) Simulations of a logistic-type model with delays for Chagas disease with insecticide spraying. Int J Biomathe. https://doi.org/10.1142/S1793524517500334

  • Anderson RM, May RM (1979) Population biology of infectious disease: Part I. Nature 280:361–367

    Article  Google Scholar 

  • Baez J, Bennett CL, Messan K, Quezada A, Aparicio JP (2012) Dynamics of triatomine infestation in a population of houses. Technical report MTBI-09-03M. https://mtbi.asu.edu/2012-3

  • Baly A, Gonzalez K, Cabrera P, Popa JC, Toledo ME, Hernandez C, Montada D, Vanlerberghe V, Van der Stuyft P (2016) Incremental cost of implementing residual insecticide treatment with delthametrine on top of intensive routine Aedes aegypti control. Trop Med Int Health 21(5):597–602

    Article  Google Scholar 

  • Barbu C, Dumonteil E, Gourbiere S (2009) Optimization of control strategies for non-domiciliated triatoma dimidiata, chagas disease vector in the Yucatan Peninsula, Mexico. PLoS Negl Trop Dis 3(4):e416. https://doi.org/10.1371/journal.pntd.0000416

  • Baryarama F, Mugisha JYT, Luboobi LS (2006) A mathematical model for the dynamics of HIV/AIDS with gradual behaviour change. Comput Math Methods Med 7:15–26

    MathSciNet  Article  MATH  Google Scholar 

  • Blayneh K, Cao Y, Kwon H (2009) Optimal control of vector-borne diseases: treatment and prevention. Discrete Contin Dyn Syst Ser B. https://doi.org/10.3934/dcdsb.2009.11.xx

  • Bollinger LA, Stover J, Musuka G, Fidzani B, Moeti T, Busang L (2009) The cost and impact of male circumcision on HIV/AIDS in Botswana. J Int AIDS Soc. https://doi.org/10.1186/1758-2652-12-7

  • Ceballos LA, Piccinali RV, Paula L, Marcet PL, Vazquez-Prokopec GM, Cardinal MV, Schachter-Broide J, Dujardin J, Dotson EM, Kitron U, Gürtler RE (2011) Hidden sylvatic foci of the main vector of Chagas disease Triatoma infestans: threats to the vector elimination campaign? PLoS Negl Trop Dis 5(10):e1365. https://doi.org/10.1371/journal.pntd.0001365

  • Centers for Disease Control and Prevention. http://www.cdc.gov/parasites/chagas/. Accessed 31 Jan 2018

  • Coffield DJ Jr, Kuttler K, Qu X, Rabinovich J, Shillor M, Spagnuolo AM, Zetye A (2014) A model for the transmission of Chagas disease with random inputs. Biomath 3(1411071):1–16

    MathSciNet  Google Scholar 

  • Dias JC, Silveira AC, Schofield CJ (2002) The impact of Chagas disease control in Latin America: a review. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro 97(5):603–612

    Article  Google Scholar 

  • Dumonteil E, Herrera C, Martini L, Grijalva MJ, Guevara AG, Costales JA, Aguilar HM, Brenière SF, Ealeckx E (2016) Chagas disease has not been controlled in ecuador. PLoS ONE 11(6):e0158145. https://doi.org/10.1371/journal.pone.0158145 June 28

  • Felippe de Souza JAM, Caetano MAL, Yoneyama T (2000) Optimal control theory applied to the anti-viral treatment of AIDS. In: Proceedings of the IEEE conference on decision and control. Source: IEEE Xplore. https://doi.org/10.1109/CDC.2001.914696

  • Fister KR, Lenhart S, McNally JS (1998) Optimizing chemotherapy in an HIV model. Electron J Differ Equ 1998(32):1–12. ISSN 1072-6691. http://ejde.math.swt.edu or http://ejde.math.unt.edu

  • Grijalva JM, Villacis GA, Ocaña-Mayorga S, Yumiseva AC, Baus EG (2011) Limitations of selective deltamethrin application for triatomine control in central coastal Ecuador. Parasites Vectors 4:20

    Article  Google Scholar 

  • Grijalva JM, Suarez-Davalos V, Villacis GA, Ocaña-Mayorga S, Dangles O (2012) Ecological factors related to the widespread distribution of sylvatic Rhodnius ecuadoriensis populations in southern Ecuador. Parasites Vectors 5:17

    Article  Google Scholar 

  • Guhl F, Pinto N, Aguilera G (2009) Sylvatic triatominae: a new challenge in vector control transmission. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro 104:71–75

    Article  Google Scholar 

  • Gurevitz JM, Gaspe MS, Enríquez GF, Vassena CV, Alvarado-Otegui JA, Provecho YM, Cueto GA, Picollo MI, Kitron U, Gürtler RE (2012) Unexpected failures to control Chagas disease vectors with pyrethroid spraying in northern Argentina. J Med Entomol 49(6):1379–1386

    Article  Google Scholar 

  • Guyatt HL, Snow RW, Evans DB (1999) Malaria epidemiology and economics: the effect of delayed immune acquisition on the cost-effectiveness of insecticide-treated bednets. Philos Trans R Soc B 354:827–835

    Article  Google Scholar 

  • Karunamoorthi K (2011) Vector control: a cornerstone in the malaria elimination campaign. Clin Microbiol Infect 17:1608–1616

    Article  Google Scholar 

  • Kirschner D, Lenhart S, Serbin S (1997) Optimal control of the chemotherapy of HIV. J Math Biol 35:775–792

    MathSciNet  Article  MATH  Google Scholar 

  • Korobeinikov A (2006) Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull Math Biol 30:615–626

    MathSciNet  Article  MATH  Google Scholar 

  • Lardeux F (2013) Niche invasion, competition and coexistence amongst wild and domestic Bolivian populations of Chagas vector Triatoma infestans (Hemiptera, Reduviidae, Triatominae). Comptes Rendus Biol 336:183–193

    Article  Google Scholar 

  • Laxminarayan R (2004) Act now or later? Economics of malaria resistance. American Journal of Tropical Medicine and Hygiene 71(2):187–195

    Google Scholar 

  • Laxminarayan R, Over M, Smith DL (2006) Will a global subsidy of new antimalarials delay the emergence of resistance and save lives? Health Aff 25(2):325–336. https://doi.org/10.1377/hlthaff.25.2.325

  • Levy MZ, Chavez FSM, Cornejo del Carpio JG, Vilhena DA, McKenzie FE, Plotkin JB (2010) Rational spatio-temporal strategies for controlling a Chagas disease vector in urban environments. J R Soc Interface 7:1061–1070. https://doi.org/10.1098/rsif.2009.0479

  • Liu Q, Chen Q (2015) Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence. Physica A Stat Mech Appl 428:140–153

    MathSciNet  Article  Google Scholar 

  • Liu LE, Dehning M, Phipps A, Swienton RE, Harris CA, Klein KR (2016) Clinical update on dengue, Chikungunya, and Zika: What we know at the time of article submission. Disaster Med Public Health Prep. https://doi.org/10.1017/dmp.2016.144

  • Liu W, Levin SA, Iwasa Y (1986) Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J Math Biol 23:187–204

    MathSciNet  Article  MATH  Google Scholar 

  • Mougabure-Cuetoa G, Picolloa MI (2015) Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop 149:70–85

    Article  Google Scholar 

  • Maciel-de-Freitas R, Aguiar R, Bruno RV, Guimarães MC, Loureno-de-Oliveira R, Sorgine MHF, Struchiner CJ, Valle D, O’Neill SL, Moreira LA (2012) Why do we need alternative tools to control mosquito-borne diseases in Latin America? Memórias do Instituto Oswaldo Cruz, Rio de Janeiro 107(6):828–829

    Article  Google Scholar 

  • N’Guessan R, Boko P, Odjo A, Chabi J, Akogbeto M, Rowland M (2010) Control of pyrethroid and DDT-resistant Anopheles gambiae by application of indoor residual spraying or mosquito nets treated with a long-lasting organophosphate insecticide, chlorpyrifos-methyl. Malaria J 9(44). http://www.malariajournal.com/content/9/1/44

  • Nouvellet P, Cucunuba ZM, Gourbiere S (2015) Ecology, evolution and control of Chagas disease: a century of neglected modelling and a promising future. Adv Parasitol. https://doi.org/10.1016/bs.apar.2014.12.004

  • Oduro, B (2016) Ph.D. dissertation. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1458563770

  • Oduro B, Grijalva MJ, Just W (in preparation) A model of insect control with imperfect treatment

  • Okumu FO, Govella NJ, Moore SJ, Chitnis N, Killeen GF (2010) Potential benefits, limitations and target product-profiles of odor-baited mosquito traps for malaria control in Africa. PLoS ONE 5(7):e11573

    Article  Google Scholar 

  • Okosun KO, Rachid O, Marcus N (2011) Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity. BioSystems 106:136–145

    Article  Google Scholar 

  • Okosun KO, Rachid O, Marcusc N (2013) Optimal control strategies and cost-effectiveness analysis of a malaria model. BioSystems 111:83–101

    Article  Google Scholar 

  • Perko L (2001) Differential equations and dynamical systems, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Podder CN, Sharomi O, Gumel AB, Moses S (2007) To cut or not to cut: a modeling approach for assessing the role of male circumcision in HIV control. Bull Math Biol 69:2447–2466

    MathSciNet  Article  MATH  Google Scholar 

  • Portnoy A, Jit M, Lauer J, Blommaert A, Ozawa S, Stack M, Murray J, Hutubessy R (2015) Estimating costs of care for meningitis infections in low- andmiddle-income countries. Vaccine 33S:A240–A247

    Article  Google Scholar 

  • Rafikov M, Bevilacqua L, Wyse APP (2009) Optimal control strategy of malaria vector using genetically modified mosquitoes. J Theor Biol 258:418–425

    MathSciNet  Article  Google Scholar 

  • Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V (2011) Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 27(2):91–98

    Article  Google Scholar 

  • Reiner RC Jr et al (2013) A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. J R Soc Interface. https://doi.org/10.1098/rsif.2012.0921

  • O’Regan MS, Kelly TC, Korobeinikov A, O’Callaghan MJA, Pokrovskii VA (2010) Lyapunov functions for SIR and SIRS epidemic models. Appl Math Lett 23:446–448

    MathSciNet  Article  MATH  Google Scholar 

  • Rivero A, Vézilier J, Weill M, Read AF, Gandon S (2010) Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathogens 6(8):e1001000

    Article  Google Scholar 

  • Ross A, Penny M, Maire N, Studer A, Carneiro I, Schellenberg D, Greenwood B, Tanner M, Smith T (2008) Modelling the epidemiological impact of intermittent preventive treatment against malaria in infants. PLoS ONE 3(7):e2661

    Article  Google Scholar 

  • Shankar MB, Staples JE, Meltzer MI, Fischer M (2017) Cost-effectiveness of a targeted age-based West Nile virus vaccination program. Vaccine 35:3143–3151

    Article  Google Scholar 

  • Spagnuolo AM, Shillor M, Stryker GA (2011) A model for Chagas disease with controlled spraying. J Biol Dyn 5(4):299–317

    MathSciNet  Article  MATH  Google Scholar 

  • Spagnuolo AM, Shillor M, Kingsland L, Thatcher A, Toeniskoetter M, Wood B (2012) A logistic delay differential equation model for Chagas disease interrupted spraying schedules. J Biol Dyn 6(2):377–394

    MathSciNet  Article  Google Scholar 

  • Spagnuolo AM, Coffield DJ Jr, Carignan AM, Corcoran AH, Vanloo B, Shillor M, Pawelek KA (2015) A mathematical model of Chagas disease dynamics in the Gran Chaco region. J Coupled Syst Multiscale Dyn 3(3):177–199

    Article  Google Scholar 

  • Stevens L, Rizzo DM, Lucero DE, Pizarro JC (2013) Household model of Chagas disease vectors (Hemiptera: Reduviidae). Considering domestic, peridomestic, and sylvatic vector populations. J Med Entomol 50:907–915

    Article  Google Scholar 

  • Suarez-Davalos V, Dangles O, Villacis GA, Grijalva JM (2010) Microdistribution of sylvatic triatomine populations in central-coastal Ecuador. J Med Entomol 47(1):80–88

    Article  Google Scholar 

  • Sweat M, Gregorich S, Sangiwa G, Furlonge C, Balmer D, Kamenga C, Grinstead O, Coates T (2000) Cost-effectiveness of voluntary HIV-1 counselling and testing in reducing sexual transmission of HIV-1 in Kenya and Tanzania. Lancet 356:113–121

    Article  Google Scholar 

  • Tediosi F, Maire N, Penny M, Studer A, Smith T (2009) Simulation of the cost-effectiveness of malaria vaccines. Malaria J. 8(127). https://doi.org/10.1186/1475-2875-8-127;http://www.malariajournal.com/content/8/1/127

  • van den Berg H (2009) Global status of DDT and its alternatives for use in vector control to prevent disease. Environ Health Perspect 117:1656–1663

    Article  Google Scholar 

  • Waleckx E, Depickère S, Salas R, Aliaga C, Monje M, Calle H, Buitrago R, Noireau F, Brenière SF (2012) New discoveries of sylvatic Triatoma infestans (Hemiptera: Reduviidae) throughout the Bolivian Chaco. American Journal of Tropical Medicine and Hygiene 86(3):455–458

    Article  Google Scholar 

  • Wang W (2006) Backward bifurcation of an epidemic model with treatment. Math Biosci 201:58–71

    MathSciNet  Article  MATH  Google Scholar 

  • White MT, Conteh L, Cibulskis R, Ghani AC (2011) Costs and cost-effectiveness of malaria control interventions-a systematic review. Malaria J 10:337. https://doi.org/10.1186/1475-2875-10-337

  • World Health Organization. http://apps.who.int/iris/bitstream/10665/111008/1/WHO_DCO_WHD_2014.1_eng.pdf

  • Yewhalaw D, Wassie F, Steurbaut W, Spanoghe P, Bortel WV, Denis L, Tessema DA, Getachew Y, Coosemans M, Duchateau L, Speybroeck N (2011) Multiple insecticide resistance: an impediment to insecticide-based malaria vector control program. PLoS ONE 6(1):e16066. https://doi.org/10.1371/journal.pone.0016066

  • Zegers de Beyl C, Koenker H, Acosta A, Onyefunafoa EO, Adegbe E, McCartney-Melstad A, Selby RA, Kilian A (2016) Multi-country comparison of delivery strategies for mass campaigns to achieve universal coverage with insecticide-treated nets: what works best? Malaria J. https://doi.org/10.1186/s12936-016-1108-x

  • Zhang X, Liu X (2008) Backward bifurcation of an epidemic model with saturated treatment function. J Math Anal Appl 348:433–443

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

We are greatly indebted to former Ohio University student William Clark for helping us with preliminary simulations and pointing out the strange shape of the curves for the cost at equilibrium level that led to this study of the dual-rate effect. We also thank Sofia Ocaña-Mayorga, Anita G. Villacis, and Cesar Yumiseva of the Center for Research on Health in Latin America (CISeAL) for sharing valuable insights on Chagas disease transmission. Special thanks are due to the referees and the editor for valuable comments. They greatly helped us in improving the manuscript and pointed us to promising directions of future research. This work received financial support to MG from Pontifical Catholic University of Ecuador (K13063 and L13254) http://www.puce.edu.ec, Children’s Heartlink USA http://www.childrensheartlink.org/ Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (DMID/NIADID/NIH) [AI077896-01] and Fogarty International Center, Global Infectious Disease Training Grant (TW008261-01A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bismark Oduro.

Appendix

Appendix

Calculating \(I^*\) for the Basic Model with \(c > 0\)

At an equilibrium,

$$\begin{aligned} \begin{aligned} -\beta I^*S^*-cS^*+w(m-S^*-I^*)&=0 \\ \beta I^*S^* +cS^*-rI^*&=0.\\ \end{aligned} \end{aligned}$$
(28)

From the second line, we have

$$\begin{aligned} S^*=\frac{rI^*}{\beta I^*+c}. \end{aligned}$$
(29)

Substituting (29) into the first line of (28) and simplifying give a quadratic equation:

$$\begin{aligned} \beta (w+r)\left( I^*\right) ^{2}-(\beta wm-rw-c(w+r))I^*-wcm=0. \end{aligned}$$
(30)

The only solution of (30) with \(I^* \ge 0\) is:

$$\begin{aligned} I^{*}=\frac{1}{2}\left( \left[ \frac{wm}{(w+r)}-\frac{rw}{\beta (w+r)}-\frac{c}{\beta }\right] + \sqrt{\left( \frac{wm}{(w+r)}-\frac{rw}{\beta (w+r)}-\frac{c}{\beta }\right) ^{2}+\frac{4wcm}{\beta (w+r)}}\right) . \end{aligned}$$

Proof of Inequality (22)

For \(r_1=\frac{w(\beta m-c)}{w+c}\), we have \(\frac{wm}{w+r_1}-\frac{r_1w}{\beta (w+r_1)}-\frac{c}{\beta } = 0\).

Recall that

$$\begin{aligned} I^*(r) =0.5\left( \frac{wm}{w+r}-\frac{r_1w}{\beta (w+r)}-\frac{c}{\beta } +\sqrt{\left( \frac{wm}{w+r}-\frac{r_1w}{\beta (w+r)}-\frac{c}{\beta }\right) ^2+\frac{4wcm}{\beta (w+r)}}\right) . \end{aligned}$$

Let \(T(r)=\frac{wm}{w+r}-\frac{rw}{\beta (w+r)}-\frac{c}{\beta }\) and \(P(r)=\frac{wcm}{\beta (w+r)}\). Then,

$$\begin{aligned} I^*(r) = 0.5T(r)+0.5\sqrt{(T(r))^2+4P(r)}. \end{aligned}$$
(31)

Now,

$$\begin{aligned} I^*(r_1)=0.5\left( 0\right) +0.5\sqrt{\left( 0\right) ^2+\frac{4wcm}{\beta (w+r_1)}}=\frac{1}{2}\left( \sqrt{\frac{4wcm}{\beta (w+r_1)}}\right) =\sqrt{\frac{wcm}{\beta (w+r_1)}}. \end{aligned}$$
(32)

We have

$$\begin{aligned} T^{'}(r) =-\frac{w(\beta m+w)}{\beta (w+r)^2} \quad \text{ and } \quad P^{'}(r) =\frac{-wcm}{\beta (w+r)^2}. \end{aligned}$$

From (31), we obtain

$$\begin{aligned} \left( I^*\right) '(r)=0.5T^{'}(r)+0.5\frac{T(r)T^{'}(r)+2P^{'}(r)}{\sqrt{T^2(r)+4P(r)}}, \end{aligned}$$

so that

$$\begin{aligned} \begin{aligned} \left( I^*\right) '(r_1)&= -\frac{wm}{2(w+r_1)^2}-\frac{w^2}{2\beta (w+r_1)^2}-\frac{wcm}{2\beta (w+r_1)^2\sqrt{\frac{wcm}{\beta (w+r_1)}}}\\ r_1\left( I^*\right) '(r_1)&=-\frac{wmr_1}{2(w+r_1)^2}-\frac{w^2r_1}{2\beta (w+r_1)^2}-\frac{wcmr_1}{2\beta (w+r_1)^2\sqrt{\frac{wcm}{\beta (w+r_1)}}}.\\ \end{aligned} \end{aligned}$$

Therefore, in view of (32),

$$\begin{aligned} \begin{aligned} C^{'}(r_1)&=r_1\left( I^*\right) '(r_1)+I^*(r_1)\\&=-\frac{wmr_1}{2(w+r_1)^2}-\frac{w^2r_1}{2\beta (w+r_1)^2}-\frac{wcmr_1}{2\beta (w+r_1)^2\sqrt{\frac{wcm}{\beta (w+r_1)}}}+\sqrt{\frac{wcm}{\beta (w+r_1)}}\\&=\frac{wm}{(w+r_1)^2\sqrt{\frac{wcm}{\beta (w+r_1)}}}\left( \frac{cw}{\beta }-\left[ \sqrt{\frac{wcm}{\beta (w+r_1)}}-\frac{c}{\beta }\right] \frac{r_1}{2}\right) -\frac{w^2r_1}{2\beta (w+r_1)^2}.\\ \end{aligned} \end{aligned}$$

Replace \(r_1\) by \(\frac{w(\beta m-c)}{w+c}\) and let

$$\begin{aligned} A=\sqrt{\frac{wcm}{\beta (w+r_1)}}-\frac{c}{\beta }=\sqrt{\frac{cm(w+c)}{\beta (w+\beta m)}}-\frac{c}{\beta }>0. \end{aligned}$$

Notice that for positive \(\beta , c, m, w\) the following inequalities are all equivalent:

$$\begin{aligned} \begin{aligned} \frac{cm(w+c)}{\beta (w+\beta m)}&>\frac{c^2}{\beta ^2}\\ \frac{m(w+c)}{w+\beta m}&>\frac{c}{\beta }\\ \beta m(w+c) = \beta mw+\beta mc&> cw+\beta mc = c(w+\beta m)\\ \beta mw&> cw\\ m&> \frac{c}{\beta }. \end{aligned} \end{aligned}$$

Thus, \(A > 0\) if, and only if, \(m > \frac{c}{\beta }\).

Also,

$$\begin{aligned} w+r_1=w+\frac{w(\beta m-c)}{w+c}=\frac{w(w+c)+w(\beta m-c)}{w+c}=\frac{w(w+\beta m)}{w+c}. \end{aligned}$$

It follows that

$$\begin{aligned} C^{'}(r_1)&=\frac{m(w+c)^2}{(w+\beta m)^2\sqrt{\frac{cm(w+c)}{\beta (w+\beta m)}}}\left( \frac{c}{\beta }-A \frac{\beta m-c}{2(w+c)}\right) -\frac{w(\beta m-c)(w+c)}{2\beta (w+\beta m)^2}. \end{aligned}$$

Now, it suffices to show that when m is sufficiently large relative to the ratio \(\frac{c}{\beta }\), the inequality

$$\begin{aligned} \frac{c}{\beta }-A \frac{\beta m-c}{2(w+c)}<0 \end{aligned}$$
(33)

holds so that

$$\begin{aligned} C^{'}(r_1)<0. \end{aligned}$$

In order to prove (33), it suffices to find some constant \(B> 0\) such that \(A \ge B\) for all sufficiently large m.

Here, we will show that

$$\begin{aligned} 0 <\sqrt{\frac{c(c+\beta )\left( w+c\right) }{\beta ^{2}\left( w+c+\beta \right) }}-\frac{c}{\beta }\le \sqrt{\frac{cm\left( w+c\right) }{\beta \left( w+\beta m\right) }}-\frac{c}{\beta } \end{aligned}$$
(34)

for all \(m\ge \frac{c}{\beta }+1=\frac{c+\beta }{\beta }\).

For the first inequality in (34), notice that the following are all equivalent for any \(\beta , w, c\ge 0\):

$$\begin{aligned} \begin{aligned} \beta w&> 0\\ \left( c+\beta \right) \left( w+c\right) = cw+c^2+\beta c+ \beta w&> cw+c^2+\beta c = c\left( w+c+\beta \right) \\ \frac{\left( c+\beta \right) \left( w+c\right) }{\left( w+c+\beta \right) }&\ge c\\ \frac{c\left( c+\beta \right) \left( w+c\right) }{\beta ^2\left( w+c+\beta \right) }&\ge \frac{c^2}{\beta ^2}\\ \sqrt{\frac{c\left( c+\beta \right) \left( w+c\right) }{\beta ^2\left( w+c+\beta \right) }}-\frac{c}{\beta }&> 0. \end{aligned} \end{aligned}$$

For the second inequality in (34), assume \(\frac{c}{\beta }+1\le m\). Then,

$$\begin{aligned} \begin{aligned} cw+\beta w&\le \beta wm\\ \left( c+\beta \right) \left( w+\beta m\right) = cw+\beta w+c\beta m+\beta ^2m&\le \beta wm+c\beta m+\beta ^2m = \beta m\left( w+c+\beta \right) \\ \frac{c+\beta }{\beta \left( w+c+\beta \right) }&\le \frac{m}{w+\beta m}\\ \frac{c\left( c+\beta \right) \left( w+c\right) }{\beta ^2 \left( w+c+\beta \right) }&\le \frac{cm\left( w+c\right) }{\beta \left( w+\beta m\right) }\, , \end{aligned} \end{aligned}$$

and the result follows by taking square roots of both sides and subtracting \(\frac{c}{\beta }\).

Proof of Theorem 3.6

Assume \(\gamma =\frac{c}{\beta }\). Then,

$$\begin{aligned} \begin{aligned} I^{*}(r)&=\frac{1}{2}\left( \frac{wm}{w+r}-\frac{rw}{\beta (w+r)}-\gamma +\sqrt{\left( \frac{wm}{w+r}-\frac{rw}{\beta (w+r)}-\gamma \right) ^{2}+\frac{4\gamma wm}{w+r}}\right) \\&=\frac{1}{2}\left[ \frac{-\frac{4wm}{w+r}}{\left[ \frac{wm}{\gamma (w+r)}-\frac{rw}{c(w+r)}-1-\sqrt{\left( \frac{wm}{\gamma (w+r)}-\frac{rw}{c(w+r)}-1\right) ^{2}+\frac{4wm}{\gamma (w+r)}}\right] }\right] \\&=\frac{2wm}{\frac{-wm}{\gamma }+\frac{rw}{c}+w+r+\sqrt{\left( \frac{-wm}{\gamma }+\frac{rw}{c}+w+r\right) ^{2}+\frac{4wm(w+r)}{\gamma }}}. \end{aligned} \end{aligned}$$
(35)

We show that for \(\gamma > m\) and any \(r_2 > r_1 \ge 0\):

$$\begin{aligned} C(r_2)-C(r_1) =r_2I^{*}(r_2)-r_1I^{*}(r_1) \ge 0. \end{aligned}$$
(36)

By substituting the last line of (35) into the right-hand side of (36), canceling the positive factor 2mw and cross multiplying with the positive denominators, we see that it suffices to show

$$\begin{aligned} \begin{aligned}&r_2\left[ \frac{-wm}{\gamma }+\frac{r_1w}{c}+w+r_1+\sqrt{\left( \frac{-wm}{\gamma }+\frac{r_1w}{c}+w+r_1\right) ^{2}+\frac{4wm(w+r_1)}{\gamma }}\right] \\&\quad \ge r_1\left[ \frac{-wm}{\gamma }+\frac{r_2w}{c}+w+r_2+\sqrt{\left( \frac{-wm}{\gamma }+\frac{r_2w}{c}+w+r_2\right) ^{2}+\frac{4wm(w+r_2)}{\gamma }}\right] \end{aligned} \end{aligned}$$

Canceling some common terms gives

$$\begin{aligned} \begin{aligned}&r_2\left[ \frac{-wm}{\gamma }+w+\sqrt{\left( \frac{-wm}{\gamma }+\frac{r_1w}{c}+w+r_1\right) ^{2}+\frac{4wm(w+r_1)}{\gamma }}\right] \\&\quad \ge r_1\left[ \frac{-wm}{\gamma }+w+\sqrt{\left( \frac{-wm}{\gamma }+\frac{r_2w}{c}+w+r_2\right) ^{2}+\frac{4wm(w+r_2)}{\gamma }}\right] . \end{aligned} \end{aligned}$$

After rearranging terms, we obtain

$$\begin{aligned} \begin{aligned}&\left( r_2-r_1\right) \left[ w\left( 1-\frac{m}{\gamma }\right) +\sqrt{\left( \frac{-wmr_2}{\gamma }+\frac{r_1r_2w}{c}+wr_2+r_1r_2\right) ^{2}+\frac{4wmr^2_2(w+r_1)}{\gamma }}\right. \\&\quad \left. -\sqrt{\left( \frac{-wmr_1}{\gamma }+\frac{r_1r_2w}{c}+wr_1+r_1r_2\right) ^{2}+\frac{4wmr^2_1(w+r_2)}{\gamma }}\right] \ge 0. \end{aligned} \end{aligned}$$

If \(\gamma > m\), the first term in the square brackets is nonnegative. Next, we will show that

$$\begin{aligned} \begin{aligned}&\sqrt{\left( \frac{-wmr_2}{\gamma }+\frac{r_1r_2w}{c}+wr_2+r_1r_2\right) ^{2}+\frac{4wmr^2_2(w+r_1)}{\gamma }}\\&\quad \ge \sqrt{\left( \frac{-wmr_1}{\gamma }+\frac{r_1r_2w}{c}+wr_1+r_1r_2\right) ^{2}+\frac{4wmr^2_1(w+r_2)}{\gamma }}. \end{aligned} \end{aligned}$$
(37)

Consider the following expression, which is always positive for \(r_2>r_1\):

$$\begin{aligned} \begin{aligned}&\left[ (r_2+r_1)\left( w-\frac{wm}{\gamma }\right) +\frac{2r_1r_2w}{c}+2r_1r_2\right] \left[ \left( r_2-r_1\right) \left( w-\frac{wm}{\gamma }\right) \right] \\&\quad +\frac{4w^2m}{\gamma }\left( r^2_2-r^2_1\right) +\frac{4wmr_1r_2}{\gamma }\left( r_2-r_1\right) \ge 0. \end{aligned} \end{aligned}$$
(38)

By expanding the products inside each of the main factors in the first line of (38) and rearranging terms, we obtain:

$$\begin{aligned} \begin{aligned}&\left( \frac{-wmr_2}{\gamma }+\frac{r_1r_2w}{c}+wr_2+r_1r_2-\frac{wmr_1}{\gamma }+\frac{r_1r_2w}{c}+wr_1+r_1r_2\right) \\&\quad \left( \frac{-wmr_2}{\gamma }+\frac{r_1r_2w}{c}+wr_2+r_1r_2+\frac{wmr_1}{\gamma }-\frac{r_1r_2w}{c}-wr_1-r_1r_2\right) \\&\quad +\frac{4w^2mr^2_2}{\gamma }+\frac{4wmr_1r^2_2}{\gamma }-\frac{4w^2mr^2_1}{\gamma }-\frac{4wmr^2_1r_2}{\gamma }\ge 0. \end{aligned} \end{aligned}$$
(39)

By rewriting the first two lines of (39) as a difference of two squares and factoring out some terms in the third, we obtain

$$\begin{aligned} \begin{aligned}&\left( \frac{-wmr_2}{\gamma }+\frac{r_1r_2w}{c}+wr_2+r_1r_2\right) ^2-\left( \frac{-wmr_1}{\gamma }+\frac{r_1r_2w}{c}+wr_1+r_1r_2\right) \\&\quad +\frac{4wmr^2_2}{\gamma }\left( w+r_1\right) ^2-\frac{4wmr^2_1}{\gamma }\left( w+r_2\right) \ge 0. \end{aligned} \end{aligned}$$
(40)

Now, (37) follows from (40) by moving the negative terms to the right and taking square roots.

The Cost Function Increases When \(\beta = 0\)

When we set \(\beta = 0\) in the basic model, we obtain a system of linear DEs

$$\begin{aligned} \begin{aligned} \frac{\hbox {d}I}{\hbox {d}t}&=c(m-I-R)-rI\\ \frac{\hbox {d}R}{\hbox {d}t}&=rI-wR.\\ \end{aligned} \end{aligned}$$

At equilibrium,

$$\begin{aligned} \begin{aligned} c(m-I^{*}-R^{*})-rI^{*}&=0\\ rI^{*}-wR^{*}&=0.\\ \end{aligned} \end{aligned}$$
(41)

Substitute \(R^{*}=\frac{rI^{*}}{w}\) into the first line of (41) and solve for \(I^{*}\) to get

$$\begin{aligned} \begin{aligned} I^{*}&=\frac{cwm}{wc+r(w+c)}\\ C(r)&=\frac{rcwm}{wc+r(w+c)}. \end{aligned} \end{aligned}$$

Thus, we can estimate the derivative of the cost function as follows:

$$\begin{aligned} \begin{aligned} \frac{\hbox {d}C}{\hbox {d}r}&=\frac{\left[ wc+r(w+c)\right] cwm-rcwm\left[ w+c\right] }{\left( wc+r(w+c)\right) ^2}\\&=\frac{w^2c^2m+rcw^2m+rc^2wm-rcw^2m-rc^2wm}{\left( wc+r(w+c)\right) ^2}\\&=\frac{w^2c^2m}{\left( wc+r(w+c)\right) ^2}>0.\\ \end{aligned} \end{aligned}$$

Proof of Proposition 3.8(a)

We consider any function of the form

$$\begin{aligned} f(h) = c - h + \sqrt{(c-h)^2 + dh}, \end{aligned}$$
(42)

where \(c, d > 0\) are constants such that

$$\begin{aligned} d > \max \{4c, 0\}. \end{aligned}$$
(43)

The first derivative of f wrt h behaves as follows:

$$\begin{aligned} \begin{aligned} f'(h)&= -1 + \frac{-(c-h) + d/2}{\sqrt{(c-h)^2 + dh}},\\ f'(0)&= -1 + \frac{-c + d/2}{\sqrt{c^2 + 0}} = -1 -\frac{c}{|c|} + \frac{d}{2|c|} > 0,\\ \lim _{h\rightarrow \infty } f'(h)&= \lim _{h\rightarrow \infty } - 1 + \frac{-(c-h) + d/2}{\sqrt{(c-h)^2 + dh}}\\&= \lim _{h\rightarrow \infty } -1 +\frac{h-c}{\sqrt{(c-h)^2 + dh}} +\frac{ d}{2\sqrt{(c-h)^2 + dh}} = 0. \end{aligned} \end{aligned}$$
(44)

Let us calculate the second derivative of f wrt h.

$$\begin{aligned} \begin{aligned} f''(h)&= \frac{\sqrt{(c-h)^2 + dh} - \frac{((c-h) - d/2)^2}{\sqrt{(c-h)^2 + dh}}}{(c-h)^2 + dh} = \frac{(c-h)^2 + dh - ((c-h) - d/2)^2}{((c-h)^2 + dh)\sqrt{(c-h)^2 + dh}}\\&=\frac{(c-h)^2 + dh - (c-h)^2 - d^2/4 - dh + dc}{((c-h)^2 + dh)\sqrt{(c-h)^2 + dh}}\\&= \frac{ - d^2/4 + dc}{((c-h)^2 + dh)\sqrt{(c-h)^2 + dh}} < 0. \end{aligned} \end{aligned}$$

The last inequality follows from (43).

Thus, \(f'(0) > 0\) and \(f'\) decreases throughout \([0, \infty )\). Now, it follows from the last part of (44) that \(f'(h) > 0\) throughout \([0, \infty )\). Proposition 3.8(a) follows by observing that the function \(\frac{I^*(r_i, c_i)}{2\beta _{ii}}\) is of the form (42) with

$$\begin{aligned} \begin{aligned} h&= c_i\\ c&= \frac{\beta _{ii}w_im_i-w_ir_i}{w_i+r_i}\\ d&= \frac{4\beta _{ii}w_im_i}{w_i+r_i}, \end{aligned} \end{aligned}$$

so that (43) holds.

Proof of Proposition 3.8(c)

$$\begin{aligned}&\lim _{r\rightarrow \infty }C(r)= \lim _{r\rightarrow \infty } rI^*(r) \\&\quad = \frac{1}{2}\lim _{r \rightarrow \infty }r\left( \frac{wm}{w+r}-\frac{rw}{\beta (w+r)}-\frac{c}{\beta }+\sqrt{\left( \frac{wm}{w+r}-\frac{rw}{\beta (w+r)}-\frac{c}{\beta }\right) ^{2}+\frac{4wcm}{\beta (w+r)}}\right) \\&\quad =\frac{1}{2}\lim _{r \rightarrow \infty }r\left[ \frac{\left[ \frac{wm}{w+r}-\frac{rw}{\beta (w+r)}-\frac{c}{\beta }\right] ^2-\left[ \left( \frac{wm}{w+r}-\frac{rw}{\beta (w+r)}-\frac{c}{\beta }\right) ^{2}+\frac{4wcm}{\beta (w+r)}\right] }{\left[ \frac{wm}{w+r}-\frac{rw}{\beta (w+r)}-\frac{c}{\beta }\right] -\sqrt{\left( \frac{wm}{w+r}-\frac{rw}{\beta (w+r)}-\frac{c}{\beta }\right) ^{2}+\frac{4wcm}{\beta (w+r)}}}\right] \\&\quad =\frac{1}{2}\lim _{r \rightarrow \infty }\left[ \frac{-\frac{4rwcm}{\beta (w+r)}}{\left[ \frac{wm}{w+r}-\frac{rw}{\beta (w+r)}-\frac{c}{\beta }\right] -\sqrt{\left( \frac{wm}{w+r}-\frac{rw}{\beta (w+r)}-\frac{c}{\beta }\right) ^{2}+\frac{4wcm}{\beta (w+r)}}}\right] \\&\quad =\frac{1}{2}\left[ \frac{-\frac{4wmc}{\beta }}{-\frac{w}{\beta }-\frac{c}{\beta }-\sqrt{\left( \frac{w}{\beta }+\frac{c}{\beta }\right) ^{2}}}\right] =\frac{1}{2}\left[ \frac{-\frac{4wmc}{\beta }}{-2\frac{(w+c)}{\beta }}\right] =\frac{wcm}{w+c}. \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oduro, B., Grijalva, M.J. & Just, W. Models of Disease Vector Control: When Can Aggressive Initial Intervention Lower Long-Term Cost?. Bull Math Biol 80, 788–824 (2018). https://doi.org/10.1007/s11538-018-0401-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-0401-y

Keywords

  • Chagas disease
  • Cost of insecticide treatment
  • SIRS models
  • (Re)infestation
  • Dual-rate effect