Advertisement

Bulletin of Mathematical Biology

, Volume 80, Issue 4, pp 788–824 | Cite as

Models of Disease Vector Control: When Can Aggressive Initial Intervention Lower Long-Term Cost?

  • Bismark Oduro
  • Mario J. Grijalva
  • Winfried Just
Original Article

Abstract

Insecticide spraying of housing units is an important control measure for vector-borne infections such as Chagas disease. As vectors may invade both from other infested houses and sylvatic areas and as the effectiveness of insecticide wears off over time, the dynamics of (re)infestations can be approximated by \({ SIRS}\)-type models with a reservoir, where housing units are treated as hosts, and insecticide spraying corresponds to removal of hosts. Here, we investigate three ODE-based models of this type. We describe a dual-rate effect where an initially very high spraying rate can push the system into a region of the state space with low endemic levels of infestation that can be maintained in the long run at relatively moderate cost, while in the absence of an aggressive initial intervention the same average cost would only allow a much less significant reduction in long-term infestation levels. We determine some sufficient and some necessary conditions under which this effect occurs and show that it is robust in models that incorporate some heterogeneity in the relevant properties of housing units.

Keywords

Chagas disease Cost of insecticide treatment SIRS models (Re)infestation Dual-rate effect 

Notes

Acknowledgements

We are greatly indebted to former Ohio University student William Clark for helping us with preliminary simulations and pointing out the strange shape of the curves for the cost at equilibrium level that led to this study of the dual-rate effect. We also thank Sofia Ocaña-Mayorga, Anita G. Villacis, and Cesar Yumiseva of the Center for Research on Health in Latin America (CISeAL) for sharing valuable insights on Chagas disease transmission. Special thanks are due to the referees and the editor for valuable comments. They greatly helped us in improving the manuscript and pointed us to promising directions of future research. This work received financial support to MG from Pontifical Catholic University of Ecuador (K13063 and L13254) http://www.puce.edu.ec, Children’s Heartlink USA http://www.childrensheartlink.org/ Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (DMID/NIADID/NIH) [AI077896-01] and Fogarty International Center, Global Infectious Disease Training Grant (TW008261-01A1).

References

  1. Abad-Franch F, Ferraz G, Campos C, Palomeque FS, Grijalva MJ, Aguilar HM, Miles MA (2010) Modeling disease vector occurrence when detection is imperfect: infestation of Amazonian palm trees by triatomine bugs at three spatial scales. PLoS Negl Trop Dis 4(3):e620.  https://doi.org/10.1371/journal.pntd.0000620
  2. Al-Asuoad N, Pleasant T, Shillor M, Munugala H, Coffield DJ Jr, Spagnuolo AM (2017) Simulations of a logistic-type model with delays for Chagas disease with insecticide spraying. Int J Biomathe.  https://doi.org/10.1142/S1793524517500334
  3. Anderson RM, May RM (1979) Population biology of infectious disease: Part I. Nature 280:361–367CrossRefGoogle Scholar
  4. Baez J, Bennett CL, Messan K, Quezada A, Aparicio JP (2012) Dynamics of triatomine infestation in a population of houses. Technical report MTBI-09-03M. https://mtbi.asu.edu/2012-3
  5. Baly A, Gonzalez K, Cabrera P, Popa JC, Toledo ME, Hernandez C, Montada D, Vanlerberghe V, Van der Stuyft P (2016) Incremental cost of implementing residual insecticide treatment with delthametrine on top of intensive routine Aedes aegypti control. Trop Med Int Health 21(5):597–602CrossRefGoogle Scholar
  6. Barbu C, Dumonteil E, Gourbiere S (2009) Optimization of control strategies for non-domiciliated triatoma dimidiata, chagas disease vector in the Yucatan Peninsula, Mexico. PLoS Negl Trop Dis 3(4):e416.  https://doi.org/10.1371/journal.pntd.0000416
  7. Baryarama F, Mugisha JYT, Luboobi LS (2006) A mathematical model for the dynamics of HIV/AIDS with gradual behaviour change. Comput Math Methods Med 7:15–26MathSciNetCrossRefzbMATHGoogle Scholar
  8. Blayneh K, Cao Y, Kwon H (2009) Optimal control of vector-borne diseases: treatment and prevention. Discrete Contin Dyn Syst Ser B.  https://doi.org/10.3934/dcdsb.2009.11.xx
  9. Bollinger LA, Stover J, Musuka G, Fidzani B, Moeti T, Busang L (2009) The cost and impact of male circumcision on HIV/AIDS in Botswana. J Int AIDS Soc.  https://doi.org/10.1186/1758-2652-12-7
  10. Ceballos LA, Piccinali RV, Paula L, Marcet PL, Vazquez-Prokopec GM, Cardinal MV, Schachter-Broide J, Dujardin J, Dotson EM, Kitron U, Gürtler RE (2011) Hidden sylvatic foci of the main vector of Chagas disease Triatoma infestans: threats to the vector elimination campaign? PLoS Negl Trop Dis 5(10):e1365.  https://doi.org/10.1371/journal.pntd.0001365
  11. Centers for Disease Control and Prevention. http://www.cdc.gov/parasites/chagas/. Accessed 31 Jan 2018
  12. Coffield DJ Jr, Kuttler K, Qu X, Rabinovich J, Shillor M, Spagnuolo AM, Zetye A (2014) A model for the transmission of Chagas disease with random inputs. Biomath 3(1411071):1–16MathSciNetGoogle Scholar
  13. Dias JC, Silveira AC, Schofield CJ (2002) The impact of Chagas disease control in Latin America: a review. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro 97(5):603–612CrossRefGoogle Scholar
  14. Dumonteil E, Herrera C, Martini L, Grijalva MJ, Guevara AG, Costales JA, Aguilar HM, Brenière SF, Ealeckx E (2016) Chagas disease has not been controlled in ecuador. PLoS ONE 11(6):e0158145.  https://doi.org/10.1371/journal.pone.0158145 June 28
  15. Felippe de Souza JAM, Caetano MAL, Yoneyama T (2000) Optimal control theory applied to the anti-viral treatment of AIDS. In: Proceedings of the IEEE conference on decision and control. Source: IEEE Xplore.  https://doi.org/10.1109/CDC.2001.914696
  16. Fister KR, Lenhart S, McNally JS (1998) Optimizing chemotherapy in an HIV model. Electron J Differ Equ 1998(32):1–12. ISSN 1072-6691. http://ejde.math.swt.edu or http://ejde.math.unt.edu
  17. Grijalva JM, Villacis GA, Ocaña-Mayorga S, Yumiseva AC, Baus EG (2011) Limitations of selective deltamethrin application for triatomine control in central coastal Ecuador. Parasites Vectors 4:20CrossRefGoogle Scholar
  18. Grijalva JM, Suarez-Davalos V, Villacis GA, Ocaña-Mayorga S, Dangles O (2012) Ecological factors related to the widespread distribution of sylvatic Rhodnius ecuadoriensis populations in southern Ecuador. Parasites Vectors 5:17CrossRefGoogle Scholar
  19. Guhl F, Pinto N, Aguilera G (2009) Sylvatic triatominae: a new challenge in vector control transmission. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro 104:71–75CrossRefGoogle Scholar
  20. Gurevitz JM, Gaspe MS, Enríquez GF, Vassena CV, Alvarado-Otegui JA, Provecho YM, Cueto GA, Picollo MI, Kitron U, Gürtler RE (2012) Unexpected failures to control Chagas disease vectors with pyrethroid spraying in northern Argentina. J Med Entomol 49(6):1379–1386CrossRefGoogle Scholar
  21. Guyatt HL, Snow RW, Evans DB (1999) Malaria epidemiology and economics: the effect of delayed immune acquisition on the cost-effectiveness of insecticide-treated bednets. Philos Trans R Soc B 354:827–835CrossRefGoogle Scholar
  22. Karunamoorthi K (2011) Vector control: a cornerstone in the malaria elimination campaign. Clin Microbiol Infect 17:1608–1616CrossRefGoogle Scholar
  23. Kirschner D, Lenhart S, Serbin S (1997) Optimal control of the chemotherapy of HIV. J Math Biol 35:775–792MathSciNetCrossRefzbMATHGoogle Scholar
  24. Korobeinikov A (2006) Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull Math Biol 30:615–626MathSciNetCrossRefzbMATHGoogle Scholar
  25. Lardeux F (2013) Niche invasion, competition and coexistence amongst wild and domestic Bolivian populations of Chagas vector Triatoma infestans (Hemiptera, Reduviidae, Triatominae). Comptes Rendus Biol 336:183–193CrossRefGoogle Scholar
  26. Laxminarayan R (2004) Act now or later? Economics of malaria resistance. American Journal of Tropical Medicine and Hygiene 71(2):187–195Google Scholar
  27. Laxminarayan R, Over M, Smith DL (2006) Will a global subsidy of new antimalarials delay the emergence of resistance and save lives? Health Aff 25(2):325–336.  https://doi.org/10.1377/hlthaff.25.2.325
  28. Levy MZ, Chavez FSM, Cornejo del Carpio JG, Vilhena DA, McKenzie FE, Plotkin JB (2010) Rational spatio-temporal strategies for controlling a Chagas disease vector in urban environments. J R Soc Interface 7:1061–1070.  https://doi.org/10.1098/rsif.2009.0479
  29. Liu Q, Chen Q (2015) Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence. Physica A Stat Mech Appl 428:140–153MathSciNetCrossRefGoogle Scholar
  30. Liu LE, Dehning M, Phipps A, Swienton RE, Harris CA, Klein KR (2016) Clinical update on dengue, Chikungunya, and Zika: What we know at the time of article submission. Disaster Med Public Health Prep.  https://doi.org/10.1017/dmp.2016.144
  31. Liu W, Levin SA, Iwasa Y (1986) Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J Math Biol 23:187–204MathSciNetCrossRefzbMATHGoogle Scholar
  32. Mougabure-Cuetoa G, Picolloa MI (2015) Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop 149:70–85CrossRefGoogle Scholar
  33. Maciel-de-Freitas R, Aguiar R, Bruno RV, Guimarães MC, Loureno-de-Oliveira R, Sorgine MHF, Struchiner CJ, Valle D, O’Neill SL, Moreira LA (2012) Why do we need alternative tools to control mosquito-borne diseases in Latin America? Memórias do Instituto Oswaldo Cruz, Rio de Janeiro 107(6):828–829CrossRefGoogle Scholar
  34. N’Guessan R, Boko P, Odjo A, Chabi J, Akogbeto M, Rowland M (2010) Control of pyrethroid and DDT-resistant Anopheles gambiae by application of indoor residual spraying or mosquito nets treated with a long-lasting organophosphate insecticide, chlorpyrifos-methyl. Malaria J 9(44). http://www.malariajournal.com/content/9/1/44
  35. Nouvellet P, Cucunuba ZM, Gourbiere S (2015) Ecology, evolution and control of Chagas disease: a century of neglected modelling and a promising future. Adv Parasitol.  https://doi.org/10.1016/bs.apar.2014.12.004
  36. Oduro B, Grijalva MJ, Just W (in preparation) A model of insect control with imperfect treatmentGoogle Scholar
  37. Okumu FO, Govella NJ, Moore SJ, Chitnis N, Killeen GF (2010) Potential benefits, limitations and target product-profiles of odor-baited mosquito traps for malaria control in Africa. PLoS ONE 5(7):e11573CrossRefGoogle Scholar
  38. Okosun KO, Rachid O, Marcus N (2011) Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity. BioSystems 106:136–145CrossRefGoogle Scholar
  39. Okosun KO, Rachid O, Marcusc N (2013) Optimal control strategies and cost-effectiveness analysis of a malaria model. BioSystems 111:83–101CrossRefGoogle Scholar
  40. Perko L (2001) Differential equations and dynamical systems, 3rd edn. Springer, BerlinCrossRefzbMATHGoogle Scholar
  41. Podder CN, Sharomi O, Gumel AB, Moses S (2007) To cut or not to cut: a modeling approach for assessing the role of male circumcision in HIV control. Bull Math Biol 69:2447–2466MathSciNetCrossRefzbMATHGoogle Scholar
  42. Portnoy A, Jit M, Lauer J, Blommaert A, Ozawa S, Stack M, Murray J, Hutubessy R (2015) Estimating costs of care for meningitis infections in low- andmiddle-income countries. Vaccine 33S:A240–A247CrossRefGoogle Scholar
  43. Rafikov M, Bevilacqua L, Wyse APP (2009) Optimal control strategy of malaria vector using genetically modified mosquitoes. J Theor Biol 258:418–425MathSciNetCrossRefGoogle Scholar
  44. Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V (2011) Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 27(2):91–98CrossRefGoogle Scholar
  45. Reiner RC Jr et al (2013) A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. J R Soc Interface.  https://doi.org/10.1098/rsif.2012.0921
  46. O’Regan MS, Kelly TC, Korobeinikov A, O’Callaghan MJA, Pokrovskii VA (2010) Lyapunov functions for SIR and SIRS epidemic models. Appl Math Lett 23:446–448MathSciNetCrossRefzbMATHGoogle Scholar
  47. Rivero A, Vézilier J, Weill M, Read AF, Gandon S (2010) Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathogens 6(8):e1001000CrossRefGoogle Scholar
  48. Ross A, Penny M, Maire N, Studer A, Carneiro I, Schellenberg D, Greenwood B, Tanner M, Smith T (2008) Modelling the epidemiological impact of intermittent preventive treatment against malaria in infants. PLoS ONE 3(7):e2661CrossRefGoogle Scholar
  49. Shankar MB, Staples JE, Meltzer MI, Fischer M (2017) Cost-effectiveness of a targeted age-based West Nile virus vaccination program. Vaccine 35:3143–3151CrossRefGoogle Scholar
  50. Spagnuolo AM, Shillor M, Stryker GA (2011) A model for Chagas disease with controlled spraying. J Biol Dyn 5(4):299–317MathSciNetCrossRefzbMATHGoogle Scholar
  51. Spagnuolo AM, Shillor M, Kingsland L, Thatcher A, Toeniskoetter M, Wood B (2012) A logistic delay differential equation model for Chagas disease interrupted spraying schedules. J Biol Dyn 6(2):377–394MathSciNetCrossRefGoogle Scholar
  52. Spagnuolo AM, Coffield DJ Jr, Carignan AM, Corcoran AH, Vanloo B, Shillor M, Pawelek KA (2015) A mathematical model of Chagas disease dynamics in the Gran Chaco region. J Coupled Syst Multiscale Dyn 3(3):177–199CrossRefGoogle Scholar
  53. Stevens L, Rizzo DM, Lucero DE, Pizarro JC (2013) Household model of Chagas disease vectors (Hemiptera: Reduviidae). Considering domestic, peridomestic, and sylvatic vector populations. J Med Entomol 50:907–915CrossRefGoogle Scholar
  54. Suarez-Davalos V, Dangles O, Villacis GA, Grijalva JM (2010) Microdistribution of sylvatic triatomine populations in central-coastal Ecuador. J Med Entomol 47(1):80–88CrossRefGoogle Scholar
  55. Sweat M, Gregorich S, Sangiwa G, Furlonge C, Balmer D, Kamenga C, Grinstead O, Coates T (2000) Cost-effectiveness of voluntary HIV-1 counselling and testing in reducing sexual transmission of HIV-1 in Kenya and Tanzania. Lancet 356:113–121CrossRefGoogle Scholar
  56. Tediosi F, Maire N, Penny M, Studer A, Smith T (2009) Simulation of the cost-effectiveness of malaria vaccines. Malaria J. 8(127).  https://doi.org/10.1186/1475-2875-8-127;http://www.malariajournal.com/content/8/1/127
  57. van den Berg H (2009) Global status of DDT and its alternatives for use in vector control to prevent disease. Environ Health Perspect 117:1656–1663CrossRefGoogle Scholar
  58. Waleckx E, Depickère S, Salas R, Aliaga C, Monje M, Calle H, Buitrago R, Noireau F, Brenière SF (2012) New discoveries of sylvatic Triatoma infestans (Hemiptera: Reduviidae) throughout the Bolivian Chaco. American Journal of Tropical Medicine and Hygiene 86(3):455–458CrossRefGoogle Scholar
  59. Wang W (2006) Backward bifurcation of an epidemic model with treatment. Math Biosci 201:58–71MathSciNetCrossRefzbMATHGoogle Scholar
  60. White MT, Conteh L, Cibulskis R, Ghani AC (2011) Costs and cost-effectiveness of malaria control interventions-a systematic review. Malaria J 10:337.  https://doi.org/10.1186/1475-2875-10-337
  61. Yewhalaw D, Wassie F, Steurbaut W, Spanoghe P, Bortel WV, Denis L, Tessema DA, Getachew Y, Coosemans M, Duchateau L, Speybroeck N (2011) Multiple insecticide resistance: an impediment to insecticide-based malaria vector control program. PLoS ONE 6(1):e16066.  https://doi.org/10.1371/journal.pone.0016066
  62. Zegers de Beyl C, Koenker H, Acosta A, Onyefunafoa EO, Adegbe E, McCartney-Melstad A, Selby RA, Kilian A (2016) Multi-country comparison of delivery strategies for mass campaigns to achieve universal coverage with insecticide-treated nets: what works best? Malaria J.  https://doi.org/10.1186/s12936-016-1108-x
  63. Zhang X, Liu X (2008) Backward bifurcation of an epidemic model with saturated treatment function. J Math Anal Appl 348:433–443MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Society for Mathematical Biology 2018

Authors and Affiliations

  • Bismark Oduro
    • 1
  • Mario J. Grijalva
    • 2
    • 3
  • Winfried Just
    • 1
  1. 1.Department of MathematicsOhio UniversityAthensUSA
  2. 2.Department of Biomedical Sciences, Infectious and Tropical Disease InstituteOhio UniversityAthensUSA
  3. 3.Center for Health Research in Latin America, School of Biological SciencesPontifical Catholic University of EcuadorQuitoEcuador

Personalised recommendations