Bulletin of Mathematical Biology

, Volume 80, Issue 4, pp 701–737 | Cite as

Computational Approaches and Analysis for a Spatio-Structural-Temporal Invasive Carcinoma Model

  • Arran Hodgkinson
  • Mark A. J. Chaplain
  • Pia Domschke
  • Dumitru Trucu
Original Article

Abstract

Spatio-temporal models have long been used to describe biological systems of cancer, but it has not been until very recently that increased attention has been paid to structural dynamics of the interaction between cancer populations and the molecular mechanisms associated with local invasion. One system that is of particular interest is that of the urokinase plasminogen activator (uPA) wherein uPA binds uPA receptors on the cancer cell surface, allowing plasminogen to be cleaved into plasmin, which degrades the extracellular matrix and this way leads to enhanced cancer cell migration. In this paper, we develop a novel numerical approach and associated analysis for spatio-structuro-temporal modelling of the uPA system for up to two-spatial and two-structural dimensions. This is accompanied by analytical exploration of the numerical techniques used in simulating this system, with special consideration being given to the proof of stability within numerical regimes encapsulating a central differences approach to approximating numerical gradients. The stability analysis performed here reveals instabilities induced by the coupling of the structural binding and proliferative processes. The numerical results expound how the uPA system aids the tumour in invading the local stroma, whilst the inhibitor to this system may impede this behaviour and encourage a more sporadic pattern of invasion.

Keywords

Cancer invasion Structured cell population dynamics Computational modelling 

Mathematics Subject Classification

22E46 53C35 57S20 

References

  1. Adam J, Bellomo N (1996) A survey of models for tumor-immune system dynamics. Birkhäuser, BostonMATHGoogle Scholar
  2. Adam L, Mazumdar A, Sharma T, Jones TR, Kumar R (2001) A three-dimensional and temporo-spatial model to study invasiveness of cancer cells by heregulin and prostaglandin e\(_2\). Cancer Res 61:81–87Google Scholar
  3. Allen EJ (2009) Derivation of stochastic partial differential equations for size- and age-structured populations. J Biol Dyn 3(1):73–86.  https://doi.org/10.1080/17513750802162754 MathSciNetCrossRefMATHGoogle Scholar
  4. Al-Omari J, Gourley S (2002) Monotone travelling fronts in an age-structured reaction-diffusion model of a single species. J Math Biol 45(4):294–312.  https://doi.org/10.1007/s002850200159 MathSciNetCrossRefMATHGoogle Scholar
  5. Andasari V, Gerisch A, Lolas G, South AP, Chaplain MAJ (2011) Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J Math Biol 63(1):141–171.  https://doi.org/10.1007/s00285-010-0369-1 MathSciNetCrossRefMATHGoogle Scholar
  6. Anderson A, Chaplain MAJ (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60(5):857–899CrossRefMATHGoogle Scholar
  7. Anderson ARA, Chaplain MAJ, Newman EL et al (2000) Mathematical modelling of tumour invasion and metastasis. J Theor Med 2(2):129–154CrossRefMATHGoogle Scholar
  8. Ayati BP (2006) A structured-population model of proteus mirabilis swarm-colony development. J Math Biol 52(1):93–114.  https://doi.org/10.1007/s00285-005-0345-3 MathSciNetCrossRefMATHGoogle Scholar
  9. Barinka C, Parry G, Callahan J et al (2006) Structural basis of interaction between urokinase-type plasminogen activator and its receptor. J Mol Biol 363(2):482–495CrossRefGoogle Scholar
  10. Basse B, Ubezio P (2007) A generalised age- and phase-structured model of human tumour cell populations both unperturbed and exposed to a range of cancer therapies. Bull Math Biol 69(5):1673–1690MathSciNetCrossRefMATHGoogle Scholar
  11. Bellomo N, Preziosi L (2000) Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math Comput Model 32:413–452MathSciNetCrossRefMATHGoogle Scholar
  12. Bellomo N, Li NK, Maini PK (2008) On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math Models Methods Appl Sci 18(4):593–646MathSciNetCrossRefMATHGoogle Scholar
  13. Benzekry S, Lamont C, Beheshti A et al (2014) Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput Biol 10(8):e1003,800CrossRefGoogle Scholar
  14. Bertuzzi A, D’Onofrio A, Fasano A, Gandolfi A (2004) Modelling cell populations with spatial structure: steady state and treatment-induced evolution of tumour cords. Discrete Contin Dyn Syst Ser B 4(1):161–186MathSciNetMATHGoogle Scholar
  15. Bhuvarahamurthy V, Schroeder J, Kristiansen G et al (2005) Differential gene expression of urokinase-type plasminogen activator and its receptor in human renal cell carcinoma. Oncol Rep 14(3):777–782Google Scholar
  16. Bianchi E, Ferrero E, Fazioli F, Mangili F, Wang J, Bender JR, Blasi F, Pardi R (1996) Integrin-dependent induction of functional urokinase receptors in primary t lymphocytes. J Clin Investig 98(5):1133–1141CrossRefGoogle Scholar
  17. Binder BR, Mihaly J, Prager GW (2007) uPAR–uPA–uPAI-1 interactions and signalling: a vascular biologist’s view. Int J Vasc Biol Med 97:336–342Google Scholar
  18. Busenberg S, Iannelli M (1983) A class of nonlinear diffusion problems in age-dependent population dynamics. Nonlinear Anal Theory Methods Appl 7(5):501–529.  https://doi.org/10.1016/0362-546X(83)90041-X MathSciNetCrossRefMATHGoogle Scholar
  19. Calsina À, Saldaña J (1995) A model of physiologically structured population dynamics with a nonlinear individual growth rate. J Math Biol 33(4):335–364.  https://doi.org/10.1007/BF00176377 MathSciNetCrossRefMATHGoogle Scholar
  20. Chaplain MAJ, Lolas G (2005) Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math. Models Methods Appl Sci 11(2005):1685–1734MathSciNetCrossRefMATHGoogle Scholar
  21. Chaplain MAJ, Ganesh M, Graham IG (2001) Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J Math Biol 42(5):387–423MathSciNetCrossRefMATHGoogle Scholar
  22. Chapman SJ, Plank MJ, James A, Basse B (2007) A nonlinear model of age and size-structured populations with applications to cell cycles. ANZIAM J 49(02):151MathSciNetCrossRefMATHGoogle Scholar
  23. Chapman A, del Ama LF, Ferguson J, Kamarashev J, Wellbrock C, Huristone A (2014) Heterogeneous tumour subpopulations cooperate to drive invasion. Cell Rep 8:688–695CrossRefGoogle Scholar
  24. Chaurasia P, Aguirre-Ghiso JA, Liang OD et al (2006) A region in Urokinase plasminogen receptor domain III controlling a functional association with 5beta1 integrin and tumor growth. J Biol Chem 281(21):14852–14863CrossRefGoogle Scholar
  25. Clayton D, Schifflers E (1987) Models for temporal variation in cancer rates. I: age-period and age-cohort models. Stat Med 6(4):449–467CrossRefGoogle Scholar
  26. Cushing JM (1998) An introduction to structured population dynamics. In: CBMS-NSF regional conference series in applied mathematics, vol 71. SIAM .  https://doi.org/10.1137/1.9781611970005.ch2
  27. Cusulin C, Iannelli M, Marinoschi G (2005) Age-structured diffusion in a multi-layer environment. Nonlinear analysis: real world applications 6(1):207–223.  https://doi.org/10.1016/j.nonrwa.2004.08.006 MathSciNetCrossRefMATHGoogle Scholar
  28. Danø K, Andreasen P, Grøndahl-Hansen J et al (1985) Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 44:139–266CrossRefGoogle Scholar
  29. Danø K, Rømer J, Nielsen BS, Bjørn S et al (1999) Cancer invasion and tissue remodeling-cooperation of protease systems and cell types. APMIS 107(1–6):120–127CrossRefGoogle Scholar
  30. de Roos AM (1997) A gentle introduction to physiologically structured population models. In: Tuljapurkar S, Caswell H (eds) Structured-population models in marine, terrestrial, and freshwater systems, population and community biology series, vol 18. Springer, US, pp 119–204.  https://doi.org/10.1007/978-1-4615-5973-3_5 CrossRefGoogle Scholar
  31. Delgado M, Molina-Becerra M, Suárez A (2006) A nonlinear age-dependent model with spatial diffusion. J Math Anal Appl 313(1):366–380.  https://doi.org/10.1016/j.jmaa.2005.09.042 MathSciNetCrossRefMATHGoogle Scholar
  32. Delitala M, Lorenzi T (2012) Asymptotic dynamics in continuous structured populations with mutations, competition and mutualism. J Math Anal Appl 389:439–451.  https://doi.org/10.1016/j.jmaa.2011.11.076 MathSciNetCrossRefMATHGoogle Scholar
  33. Delitala M, Lorenzi T, Melensi M (2015) Competition between cancer cells and t cells under immunotherapy: a structured population approach. In: ITM web of conferences, vol 5.  https://doi.org/10.1051/itmconf/20150500005
  34. Deng Q, Hallam TG (2006) An age structured population model in a spatially heterogeneous environment: existence and uniqueness theory. Nonlinear Anal Theory Methods Appl 65(2):379–394.  https://doi.org/10.1016/j.na.2005.06.019 MathSciNetCrossRefMATHGoogle Scholar
  35. Di Blasio G (1979) Non-linear age-dependent population diffusion. J Math Biol 8(3):265–284.  https://doi.org/10.1007/BF00276312 MathSciNetCrossRefMATHGoogle Scholar
  36. Diekmann O, Temme NM (eds.) (1982) Nonlinear diffusion problems. No. 28 in MC syllabus. Mathematisch Centrum, AmsterdamGoogle Scholar
  37. Diekmann O, Metz JAJ (1994) On the reciprocal relationship between life histories and population dynamics. In: Lecture notes in biomathematics, Chapter Frontiers in mathematical biology, vol 100. Springer, Berlin, pp 263–279Google Scholar
  38. Diekmann O, Heijmans HJAM, Thieme HR (1984) On the stability of the cell size distribution. J Math Biol 19(2):227–248MathSciNetCrossRefMATHGoogle Scholar
  39. Diekmann O, Gyllenberg M, Metz JAJ, Thieme H (1992) The ’cumulative’ formulation of (physiologically) structured population models. CWI, AmsterdamMATHGoogle Scholar
  40. Domschke P, Trucu D, Gerisch A et al (2014) Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns. J Theor Biol 361:41–60MathSciNetCrossRefMATHGoogle Scholar
  41. Domschke P, Trucu D, Gerisch A et al (2017) Structured models of cell migration incorporating molecular binding processes. J Math Biol 75:1517–1561.  https://doi.org/10.1007/s00285-017-1120-y MathSciNetCrossRefMATHGoogle Scholar
  42. Dufau I, Frongia C, Sicard F, Dedieu L et al (2012) Multicellular tumor spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics: application to the gemcitabine/CHK1 inhibitor combination in pancreatic cancer. BMC Cancer 12(1):15CrossRefGoogle Scholar
  43. Duffy MJ, Maguire TM, McDermott EW et al (1999) Urokinase plasminogen activator: a prognostic marker in multiple types of cancer. J Surg Oncol 71(2):130–135CrossRefGoogle Scholar
  44. Dyson J, Webb G (2000a) A nonlinear age and maturity structured model of population dynamics i. Basic theory. J Math Anal Appl 242:93–104MathSciNetCrossRefMATHGoogle Scholar
  45. Dyson J, Webb G (2000b) A nonlinear age and maturity structured model of population dynamics ii. Chaos. J Math Anal Appl 242:255–270MathSciNetCrossRefMATHGoogle Scholar
  46. Ellis V, Danø K (1993) Potentiation of plasminogen activation by an anti-urokinase monoclonal antibody due to ternary complex formation. A mechanistic model for receptor-mediated plasminogen activation. J Biol Chem 268(7):4806–13Google Scholar
  47. Fitzgibbon W, Parrott M, Webb G (1995) Diffusion epidemic models with incubation and crisscross dynamics. Math Biosci 128(1–2):131–155.  https://doi.org/10.1016/0025-5564(94)00070-G MathSciNetCrossRefMATHGoogle Scholar
  48. Galle J, Hoffmann M, Aust G (2009) From single cells to tissue architecture—a bottom-up approach to modelling the spatio-temporal organisation of complex multi-cellular systems. J Math Biol 58(1–2):261–283MathSciNetCrossRefMATHGoogle Scholar
  49. Garroni MG, Langlais M (1982) Age-dependent population diffusion with external constraint. J Math Biol 14(1):77–94.  https://doi.org/10.1007/BF02154754 MathSciNetCrossRefMATHGoogle Scholar
  50. Gatenby RA, Gawlinski ET (1996) A reaction–diffusion model of cancer invasion. Cancer Res 56(24):5745–5753Google Scholar
  51. Gerisch A, Chaplain M (2008) Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J Theor Biol 250(4):684–704MathSciNetCrossRefGoogle Scholar
  52. Godár S, Hořejší V, Weidle UH et al (1999) M6P/IGFII-receptor complexes urokinase receptor and plasminogen for activation of transforming growth factor-\(\beta \)1. Eur J Immunol 29(3):1004–1013CrossRefGoogle Scholar
  53. Gurtin M, MacCamy R (1981) Diffusion models for age-structured populations. Math Biosci 54(1–2):49–59.  https://doi.org/10.1016/0025-5564(81)90075-4 MathSciNetCrossRefMATHGoogle Scholar
  54. Gyilenberg M, Webb GF (1990) A nonlinear structured population model of tumor growth with quiescence. J Math Biol 28:671–694MathSciNetCrossRefMATHGoogle Scholar
  55. Gyllenberg M (1982) Nonlinear age-dependent population dynamics in continuously propagated bacterial cultures. Math Biosci 62(1):45–74.  https://doi.org/10.1016/0025-5564(82)90062-1 MathSciNetCrossRefMATHGoogle Scholar
  56. Gyllenberg M (1986) The size and scar distributions of the yeast saccharomyces cerevisiae. J Math Biol 24(1):81–101.  https://doi.org/10.1007/BF00275722 MathSciNetCrossRefMATHGoogle Scholar
  57. Gyllenberg M, Webb G (1987) Age-size structure in populations with quiescence. Math Biosci 86(1):67–95.  https://doi.org/10.1016/0025-5564(87)90064-2 MathSciNetCrossRefMATHGoogle Scholar
  58. Hanahan D, Weinberg RA (2011) The hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  59. Hsieh YH (1991) Altruistic population model with sex differences. In: Arnino O, Axelrod DE, Kimmel M (eds) Mathematical population dynamics. Lecture notes in pure and applied mathematics, vol 131. Marcel Dekker Inc, New YorkGoogle Scholar
  60. Huai Q, Mazar AP, Kuo A, Parry GC et al (2006) Structure of human urokinase plasminogen activator in complex with its receptor. Science (New York, N.Y.) 311(5761):656–659CrossRefGoogle Scholar
  61. Huang C (1994) An age-dependent population model with nonlinear diffusion in \(\mathbf{R}^n\). Q Appl Math 52:377–398CrossRefGoogle Scholar
  62. Huyer W (1994) A size-structured population-model with dispersion. J Math Anal Appl 181(3):716–754.  https://doi.org/10.1006/jmaa.1994.1054 MathSciNetCrossRefMATHGoogle Scholar
  63. Khanna M, Wang F, Jo I et al (2011) Targeting multiple conformations leads to small molecule inhibitors of the uPAR\(\cdot \)uPA protein-protein interaction that block cancer cell invasion. ACS Chem Biol 9(11):1232–1243.  https://doi.org/10.1021/cb200180m
  64. Kimmel M, Darzynkiewicz Z, Arino O, Traganos F (1984) Analysis of a cell cycle model based on unequal division of metabolic constituents to daughter cells during cytokinesis. J Theor Biol 110:637–664CrossRefGoogle Scholar
  65. Kondraganti S, Gondi CS, McCutcheon I et al (2006) RNAi-mediated downregulation of urokinase plasminogen activator and its receptor in human meningioma cells inhibits tumor invasion and growth. Int J Oncol 28(6):1353–1360Google Scholar
  66. Kunisch K, Schappacher W, Webb G (1985) Nonlinear age-dependent population dynamics with random diffusion. Comput Math Appl 11(1–3):155–173MathSciNetCrossRefMATHGoogle Scholar
  67. Langlais M (1988) Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion. J Math Biol 26(3):319–346.  https://doi.org/10.1007/BF00277394 MathSciNetCrossRefMATHGoogle Scholar
  68. Langlais M, Milner FA (2003) Existence and uniqueness of solutions for a diffusion model of host-parasite dynamics. J Math Anal Appl 279(2):463–474.  https://doi.org/10.1016/S0022-247X(03)00020-9 MathSciNetCrossRefMATHGoogle Scholar
  69. Leksa V, Godar S, Cebecauer M et al (2002) The N terminus of mannose 6-phosphate/insulin-like growth factor 2 receptor in regulation of fibrinolysis and cell migration. J Biol Chem 277(43):40575–40582CrossRefGoogle Scholar
  70. Li Y, Cozzi P (2007) Targeting uPA/uPAR in prostate cancer. Cancer Treat Rev 33(6):521–527CrossRefGoogle Scholar
  71. Liang X, Yang X, Tang Y et al (2008) RNAi-mediated downregulation of urokinase plasminogen activator receptor inhibits proliferation, adhesion, migration and invasion in oral cancer cells. Oral Oncol 44(12):1172–1180CrossRefGoogle Scholar
  72. Liu D, Ghiso JA, Estrada Y et al (2002) EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1(5):445–457CrossRefGoogle Scholar
  73. Lorz A, Lorenzi T, Hochberg ME, Clairambault J, Perthame B (2013) Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. ESAIM Math Model Numer Anal 47:377–399.  https://doi.org/10.1051/m2an/2012031 MathSciNetCrossRefMATHGoogle Scholar
  74. MacCamy R (1981) A population model with nonlinear diffusion. J Differ Equ 39(1):52–72.  https://doi.org/10.1016/0022-0396(81)90083-8 MathSciNetCrossRefMATHGoogle Scholar
  75. Madsen DH, Engelholm LH, Ingvarsen S et al (2007) Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/Endo180, cooperate in fibroblast-mediated collagen degradation. J Biol Chem 282(37):27037–27045CrossRefGoogle Scholar
  76. Magal P, Ruan S (eds) (2008) Structured population models in biology and epidemiology. Springer, BerlinMATHGoogle Scholar
  77. Meinzer H, Sandblad B (1985) A simulation model for studies of intestine cell dynamics. Comput Methods Progr Biomed 21(2):89–98CrossRefGoogle Scholar
  78. Metz JAJ, Diekmann O (1986) A gentle introduction to structured population models: three worked examples. In: Lecture notes in biomathematics, vol 68, chap. The dynamics of physiologically structured populations, pp 3–45. Springer, BerlinGoogle Scholar
  79. Murray JD, Oster GF (1984) Cell traction models for generating pattern and form in morphogenesis. J Math Biol 19(3):265–279MathSciNetCrossRefMATHGoogle Scholar
  80. Peng PL, Hsieh YS, Wang CJ et al (2006) Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Toxicol Appl Pharmacol 214(1):8–15CrossRefGoogle Scholar
  81. Peng L, Trucu D, Lin P et al (2017) A multiscale mathematical model of tumour invasive growth. Bull Math Biol 79:389–429.  https://doi.org/10.1007/s11538-016-0237-2 MathSciNetCrossRefMATHGoogle Scholar
  82. Persson M, Madsen J, Østergaard S et al (2012) 68Ga-labeling and in vivo evaluation of a uPAR binding DOTA- and NODAGA-conjugated peptide for PET imaging of invasive cancers. Nucl Med Biol 39(4):560–569CrossRefGoogle Scholar
  83. Perthame B (2007) Transport equations in biology. Birkhauser Verlag, BaselGoogle Scholar
  84. Prigogine I, Lefever R (1980) Stability problems in cancer growth and nucleation. Comp Biochem Physiol Part B Comp Biochem 67(3):389–393CrossRefGoogle Scholar
  85. Rhandi A (1998) Positivity and stability for a population equation with diffusion on \(l^1\). Positivity 2(2):101–113.  https://doi.org/10.1023/A:1009721915101 MathSciNetCrossRefMATHGoogle Scholar
  86. Rijken DC (1995) 2 Plasminogen activators and plasminogen activator inhibitors: biochemical aspects. Bailliere’s Clin Haematol 8(2):291–312CrossRefGoogle Scholar
  87. Sinko JW, Streifer W (1967) A new model for age-size structure of a population. Ecology 48(6):910–918.  https://doi.org/10.2307/1934533 CrossRefGoogle Scholar
  88. Smith HW, Marshall CJ (2010) Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 11(1):23–36CrossRefGoogle Scholar
  89. So JWH, Wu J, Zou X (2001) A reaction–diffusion model for a single species with age structure. I travelling wavefronts on unbounded domains. Proc R Soc Lond Ser A Math Phys Eng Sci 457(2012):1841–1853.  https://doi.org/10.1098/rspa.2001.0789 MathSciNetCrossRefMATHGoogle Scholar
  90. Stillfried GE, Saunders DN, Ranson M et al (2007) Plasminogen binding and activation at the breast cancer cell surface: the integral role of urokinase activity. Breast Cancer Res 9(1):R14CrossRefGoogle Scholar
  91. Sugioka K, Kodama A, Okada K et al (2013) TGF-\(\beta \)2 promotes RPE cell invasion into a collagen gel by mediating urokinase-type plasminogen activator (uPA) expression. Exp Eye Res 115:13–21CrossRefGoogle Scholar
  92. Trucco E (1965a) Mathematical models for cellular systems the von foerster equation. Part i. Bull Math Biophys 27(3):285–304.  https://doi.org/10.1007/BF02478406 CrossRefGoogle Scholar
  93. Trucco E (1965b) Mathematical models for cellular systems. The von foerster equation. Part ii. Bull Math Biophys 27(4):449–471.  https://doi.org/10.1007/BF02476849 CrossRefGoogle Scholar
  94. Trucu D, Lin P, Chaplain MAJ, Wang Y (2013) A multiscale moving boundary model arising in cancer invasion. Multiscale Model Simul 11(1):309–335MathSciNetCrossRefMATHGoogle Scholar
  95. Trucu D, Domschke P, Gerisch A, Chaplain MAJ (2017) Multiscale computational modelling and analysis of cancer invasion. In: Springer lecture notes in mathematics, CIME foundation subseries, vol 2167, pp 275–310. SpringerGoogle Scholar
  96. Tucker SL, Zimmerman SO (1988) A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables. SIAM J Appl Math 48(3):549–591. URL http://www.jstor.org/stable/2101595
  97. Waltz DA, Chapman HA (1994) Reversible cellular adhesion to vitronectin linked to urokinase receptor occupancy. J Biol Chem 269(20):14,746–50Google Scholar
  98. Waltz DA, Natkin LR, Fujita RM et al (1997) Plasmin and plasminogen activator inhibitor type 1 promote cellular motility by regulating the interaction between the urokinase receptor and vitronectin. J Clin Investig 100(1):58–67CrossRefGoogle Scholar
  99. Wei Y, Waltz DA, Rao N et al (1994) Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem 269(51):32,380–8Google Scholar
  100. Yamaguchi N, Mizutani T, Kawabata K, Haga H (2015) Leader cells regulate collective cell migration via rac activation in the downstream signaling of integrin \(\beta 1\) and pi3k. Sci Rep 5(7656):1–8Google Scholar

Copyright information

© Society for Mathematical Biology 2018

Authors and Affiliations

  • Arran Hodgkinson
    • 1
  • Mark A. J. Chaplain
    • 2
  • Pia Domschke
    • 3
  • Dumitru Trucu
    • 4
  1. 1.DIMNPUniversité de Montpellier IIMontpellierFrance
  2. 2.School of Mathematics and Statistics, Mathematical InstituteUniversity of St. AndrewsSt. AndrewsUK
  3. 3.Fachbereich MathematikTechnische Universität DarmstadtDarmstadtGermany
  4. 4.Division of MathematicsUniversity of DundeeDundeeUK

Personalised recommendations