Advertisement

Bulletin of Mathematical Biology

, Volume 80, Issue 3, pp 657–669 | Cite as

Estimation of Cross-Immunity Between Drifted Strains of Influenza A/H3N2

  • Sarder Mohammed Asaduzzaman
  • Junling Ma
  • P. van den Driessche
Original Article

Abstract

To determine the cross-immunity between influenza strains, we design a novel statistical method, which uses a theoretical model and clinical data on attack rates and vaccine efficacy among school children for two seasons after the 1968 A/H3N2 influenza pandemic. This model incorporates the distribution of susceptibility and the dependence of cross-immunity on the antigenic distance of drifted strains. We find that the cross-immunity between an influenza strain and the mutant that causes the next epidemic is 88%. Our method also gives estimates of the vaccine protection against the vaccinating strain, and the basic reproduction number of the 1968 pandemic influenza.

Keywords

Cross-immunity Drift evolution Vaccine protection Seasonal influenza strains Basic reproduction number Evolutionary tree 

Notes

Acknowledgements

This research is partially supported by NSERC Discovery grants to JM and PvdD. We thank the anonymous reviewers for their constructive comments and suggestions.

References

  1. Andreasen V (2003) Dynamics of annual influenza A epidemics with immuno-selection. J Math Biol 46:504–536MathSciNetCrossRefMATHGoogle Scholar
  2. Andreasen V, Sasaki A (2006) Shaping the phylogenetic tree of influenza by cross-immunity. Theor Popul Biol 70(2):164–173CrossRefMATHGoogle Scholar
  3. Asaduzzaman SM, Ma J, van den Driessche P (2015) The coexistence or replacement of two subtypes of influenza. Math Biosci 270:1–9MathSciNetCrossRefMATHGoogle Scholar
  4. Bain LJ, Engelhardt M (2000) Introduction to probability and mathematical statistics, 2nd edn. Duxbury Press, Pacific GroveGoogle Scholar
  5. Boni MF, Gog JR, Andreasen V, Feldman MW (2006) Epidemic dynamics and antigenic evolution in a single season of influenza A. Proc R Soc Lond B Biol Sci 273:1307–1316CrossRefGoogle Scholar
  6. Cooper BS, Pitman RJ, Edmunds WJ, Gay NJ (2006) Delaying the international spread of pandemic influenza. PLoS Med 3(6):e212CrossRefGoogle Scholar
  7. Davenport FM (1962) Current knowledge of influenza vaccine. JAMA 182:11–13CrossRefGoogle Scholar
  8. Davis LE, Caldwell GG, Lynch RE, Bailey RE, Chin TDY (1970) Hong Kong influenza: the epidemiologic features of a high school family study analyzed and compared with a similar study during the 1957 Asian influenza epidemic. Am J Epidemiol 92(4):240–247CrossRefGoogle Scholar
  9. Dushoff J, Plotkin JB, Viboud C, Earn DJ, Simonsen L (2006) Mortality due to influenza in the United States—an annualized regression approach using multiple-cause mortality data. Am J Epidemiol 163(2):181–187CrossRefGoogle Scholar
  10. Earn D, Dushoff J, Levin SA (2002) Ecology and evolution of the flu. Trends Ecol Evol 17(7):334–340CrossRefGoogle Scholar
  11. Ferguson NM, Galvani AP, Bush RM (2003) Ecological and immunological determinants of influenza evolution. Nature 422:422–433CrossRefGoogle Scholar
  12. Foy HM, Cooney MK, McMahan R, Bor E, Grayston JT (1971) Single dose monovalent A/Hong Kong influenza vaccine efficacy 14 months after immunization. JAMA 217(8):1067–1071CrossRefGoogle Scholar
  13. Foy HM, Cooney MK, McMahan R (1973) A Hong Kong influenza immunity three years after immunization. JAMA 226(7):758–761CrossRefGoogle Scholar
  14. Halloran ME, Longini IM Jr, Struchiner CJ (2010) Design and analysis of vaccine studies. Springer, BerlinCrossRefMATHGoogle Scholar
  15. Jackson C, Vynnycky E, Mangtani P (2010) Estimates of the transmissibility of the 1968 (Hong Kong) influenza pandemic: evidence of increased transmissibility between successive waves. Am J Epidemiol 171:465–478CrossRefGoogle Scholar
  16. Kucharski AJ, Lessler J, Read JM, Zhu H, Jiang CQ, Guan Y et al (2015) Estimating the life course of influenza A (H3N2) antibody response from cross-sectional data. PLoS Biol 13(3):e1002082CrossRefGoogle Scholar
  17. Ma J, Earn DJD (2006) Generality of the final size formula for an epidemic of a newly invading infectious disease. Bull Math Biol 68:679–702MathSciNetCrossRefMATHGoogle Scholar
  18. Potter CW (1979) Determinants of immunity to influenza infection in man. Br Med Bull 35:69–75CrossRefGoogle Scholar
  19. Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus ADME et al (2004) Mapping the antigenic and genetic evolution of influenza virus. Science 305(5682):371–376CrossRefGoogle Scholar
  20. Taubenberger JK, Reid AH, Fanning TG (2000) The 1918 influenza virus: a killer comes into view. Virology 274:241–245CrossRefGoogle Scholar
  21. Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG (2005) Characterization of the 1918 influenza virus polymerase gene. Nature 437:889–893CrossRefGoogle Scholar
  22. Viboud C, Grais RF, Lafont BAP, Miller MA, Simonsen L (2005) Multinational impact of the 1968 Hong Kong influenza pandemic: evidence for a smoldering pandemic. J Infect Dis 192(2):233–248CrossRefGoogle Scholar
  23. Webster RG (1998) Influenza: an emerging disease. Emer Infect Dis 4(3):436–441CrossRefGoogle Scholar
  24. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56(1):152–179Google Scholar
  25. Yu X, Tsibane T, McGraw PA, House FS, Keefer CJ et al (2008) Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature 455:532–536CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of VictoriaVictoriaCanada

Personalised recommendations