Can Vaccination Save a Zika Virus Epidemic?

Abstract

Zika virus (ZIKV) is a vector-borne disease that has rapidly spread during the year 2016 in more than 50 countries around the world. If a woman is infected during pregnancy, the virus can cause severe birth defects and brain damage in their babies. The virus can be transmitted through the bites of infected mosquitoes as well as through direct contact from human to human (e.g., sexual contact and blood transfusions). As an intervention for controlling the spread of the disease, we study a vaccination model for preventing Zika infections. Although there is no formal vaccine for ZIKV, The National Institute of Allergy and Infectious Diseases (part of the National Institutes of Health) has launched a vaccine trial at the beginning of August 2016 to control ZIKV transmission, patients who received the vaccine are expected to return within 44 weeks to determine if the vaccine is safe. Since it is important to understand ZIKV dynamics under vaccination, we formulate a vaccination model for ZIKV spread that includes mosquito as well as sexual transmission. We calculate the basic reproduction number of the model to analyze the impact of relatively, perfect and imperfect vaccination rates. We illustrate several numerical examples of the vaccination model proposed as well as the impact of the basic reproduction numbers of vector and sexual transmission and the effect of vaccination effort on ZIKV spread. Results show that high levels of sexual transmission create larger cases of infection associated with the peak of infected humans arising in a shorter period of time, even when a vaccine is available in the population. However, a high level of transmission of Zika from vectors to humans compared with sexual transmission represents that ZIKV will take longer to invade the population providing a window of opportunities to control its spread, for instance, through vaccination.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Agusto F, Bewick S, Fagan W (2017) Mathematical model for zika virus dynamics with sexual transmission route. Ecol Complex 29:61–81

    Article  Google Scholar 

  2. Andraud M, Hens N, Beutels P (2013) A simple periodic-forced model for dengue fitted to incidence data in singapore. Math Biosci 244(1):22–28

    MathSciNet  Article  MATH  Google Scholar 

  3. Baca-Carrasco D, Velasco-Hernández JX (2016) Sex, mosquitoes and epidemics: an evaluation of zika disease dynamics. Bull Math Biol 78(11):2228–2242

    MathSciNet  Article  MATH  Google Scholar 

  4. Barouch DH, Thomas SJ, Michael NL (2017) Prospects for a zika virus vaccine. Immunity 46(2):176–182

    Article  Google Scholar 

  5. Bonyah E, Okosun KO (2016) Mathematical modeling of zika virus. Asian Pac J Trop Dis 6(9):673–679

    Article  Google Scholar 

  6. Brauer F, Castillo-Chavez C, Castillo-Chavez C (2001) Mathematical models in population biology and epidemiology, vol 40. Springer, Berlin

    MATH  Google Scholar 

  7. Brauer F, Castillo-Chavez C, Mubayi A, Towers S (2016) Some models for epidemics of vector-transmitted diseases. Infect Dis Model 1(1):79–87

    Article  Google Scholar 

  8. Calvet GA, Filippis AMB, Mendonça MCL, Sequeira PC, Siqueira AM, Veloso VG, Nogueira RM, Brasil P (2016) First detection of autochthonous zika virus transmission in a hiv-infected patient in rio de janeiro, brazil. J Clin Virol 74:1–3

    Article  Google Scholar 

  9. Castillo-Chavez C, Feng Z, Huang W (2002) On the computation of ro and its role on. Mathematical approaches for emerging and reemerging infectious diseases: an introduction, vol 1, pp 229. Springer Science & Business Media

  10. CDC Z-P-R (2017a). https://www.cdc.gov/zika/pdfs/zika-puerto-rico-handouts.pdf. Accessed 4/3/2017

  11. CDC Z-U (2017b). http://www.cdc.gov/zika/geo/united-states.html. Accessed 4/3/2017

  12. CIA (2017). https://www.cia.gov/library/publications/the-world-factbook/geos/rq.html. Accessed 4/3/2017

  13. Coutinhoa FA, Burattinia M, Lopeza L, Massada E (2006) Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue. Bull Math Biol 68(8):2263–2282

    MathSciNet  Article  Google Scholar 

  14. Cushing J, Diekmann O (2016) The many guises of r 0 (a didactic note). J Theor Biol 404:295–302

    MathSciNet  Article  MATH  Google Scholar 

  15. Dick G, Kitchen S, Haddow A (1952) Zika virus (i). Isolations and serological specificity. Trans R Soc Trop Med Hyg 46(5):509–520

    Article  Google Scholar 

  16. Duffy MR, Chen T-H, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C et al (2009) Zika virus outbreak on yap island, federated states of micronesia. N Engl J Med 2009(360):2536–2543

    Article  Google Scholar 

  17. Gao D, Lou Y, He D, Porco TC, Kuang Y, Chowell G, Ruan S (2016) Prevention and control of zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis. Sci Rep 6:1–10

    Article  Google Scholar 

  18. Hennessey M, Fischer M, Staples JE (2016) Zika virus spreads to new areas—region of the Americas, May 2015–January 2016. Am J Transpl 16(3):1031–1034

    Article  Google Scholar 

  19. Kucharski AJ, Funk S, Eggo RM, Mallet H-P, Edmunds WJ, Nilles EJ (2016) Transmission dynamics of zika virus in island populations: a modelling analysis of the 2013–14 french polynesia outbreak. PLoS Negl Trop Dis 10(5):e0004726

    Article  Google Scholar 

  20. Lee S, Chowell G, Castillo-Chávez C (2010) Optimal control for pandemic influenza: the role of limited antiviral treatment and isolation. J Theor Biol 265(2):136–150

    MathSciNet  Article  Google Scholar 

  21. Martorano Raimundo S, Amaku M, Massad E (2015) Equilibrium analysis of a yellow fever dynamical model with vaccination. Comput Math Methods Med 2015:482091. https://doi.org/10.1155/2015/482091

  22. medpagetoday (2017) http://www.medpagetoday.com/infectiousdisease/zikavirus/63416. Accessed 4/3/2017

  23. Musso D, Nhan T, Robin E, Roche C, Bierlaire D, Zisou K, Shan Yan A, Cao-Lormeau V, Broult J (2014) Potential for zika virus transmission through blood transfusion demonstrated during an outbreak in french polynesia, november 2013 to february 2014. Euro Surveill 19(14):20761

    Article  Google Scholar 

  24. Musso D, Roche C, Robin E, Nhan T, Teissier A, Cao-Lormeau V-M et al (2015) Potential sexual transmission of zika virus. Emerg Infect Dis 21(2):359–61

    Article  Google Scholar 

  25. NIAID N-I-o-A-a-I-D (2016) https://www.niaid.nih.gov/diseases-conditions/zika-vaccines. Accessed 4/3/2017

  26. NIH N-I-o-H (2016) https://www.nih.gov/news-events/news-releases/nih-begins-testing-investigational-zika-vaccine-humans. Accessed 4/3/2017

  27. Nuevo-día (2016) http://www.elnuevodia.com/english/english/nota/zikavaccinearrivesinpuertorico-2237961/. Accessed 4/3/2017

  28. Organization WH et al (2016a) Fourth meeting of the emergency committee under the international health regulations (2005) regarding microcephaly, other neurological disorders and zika virus. Saudi Med J 37(10):1166–1167

    Google Scholar 

  29. Organization WH et al (2016b) Who director-general summarizes the outcome of the emergency committee regarding clusters of microcephaly and guillain-barré syndrome. Saudi Med J 37(3):334

    Google Scholar 

  30. Pandey A, Mubayi A, Medlock J (2013) Comparing vector-host and sir models for dengue transmission. Math Biosci 246(2):252–259

    MathSciNet  Article  MATH  Google Scholar 

  31. Pereira RC, Silva AN, Souza MCO, Silva MV, Neves PP, Silva AA, Matos DD, Herrera MA, Yamamura AM, Freire MS et al (2015) An inactivated yellow fever 17dd vaccine cultivated in vero cell cultures. Vaccine 33(35):4261–4268

    Article  Google Scholar 

  32. Saad-Roy C, van den Driessche P, Ma J (2016) Estimation of zika virus prevalence by appearance of microcephaly. BMC Infect Dis 16(1):754

    Article  Google Scholar 

  33. Shan C, Muruato AE, Nunes BT, Luo H, Xie X, Medeiros DB, Wakamiya M, Tesh RB, Barrett AD, Wang T et al (2017) A live-attenuated zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat Med 23(6):763–767

    Article  Google Scholar 

  34. ST-Louis P-d (2016) http://www.stltoday.com/lifestyles/health-med-fit/health/slu-to-test-zika-vaccine-on-volunteers/article_59ac6393-3fd2-5553-894c-a2a6c4f0fba1.html. Accessed 4/3/2017

  35. Towers S, Brauer F, Castillo-Chavez C, Falconar AK, Mubayi A, Romero-Vivas CM (2016) Estimate of the reproduction number of the 2015 zika virus outbreak in barranquilla, colombia, and estimation of the relative role of sexual transmission. Epidemics 17:50–55

    Article  Google Scholar 

  36. Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1):29–48

    MathSciNet  Article  MATH  Google Scholar 

  37. Yakob L, Clements AC (2013) A mathematical model of chikungunya dynamics and control: the major epidemic on réunion island. PloS ONE 8(3):e57448

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Suzanne Lenhart from the University of Tennessee for her helpful comments on the organization of the article before submission. The authors are also grateful to the anonymous reviewers for their helpful comments and suggestions throughout the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karen R. Ríos-Soto.

Appendices

Appendix A \(\mathcal {R}_0\) Calculations

In this appendix, we calculate the basic reproduction of the ZIKV model using the Next Generation Operator (Van den Driessche and Watmough 2002); in our case, the population is divided into \(n=5\) compartments, the infected compartments are i, \(e_v\) and \(i_v\) giving \(m=3\). The ZFE is given by \(\mathbf {x}_{0}=(0,0,0,\frac{ (\mu +\omega )}{\mu +\phi +\omega },\frac{\phi }{\mu +\phi +\omega })^t\) where \(\mathbf {x}=(i,e_v,i_v,s,v)^t\). The progression of an infected individual through various compartments is given by:

$$\begin{aligned} \mathcal {F}(x)&= \left( \begin{array}{c} \beta s i_v + \alpha si \\ 0 \\ 0\\ 0\\ 0 \end{array} \right) \; \text {and}&\mathcal {V}(x)&= \left( \begin{array}{c} (\gamma +\mu ) i\\ -\beta _{v} s_{v}i+(\mu _{v} + \eta )e_{v}\\ -\eta e_{v} + \mu _{v} i_{v}\\ -\mu +\beta si_{v}+\alpha s i +\phi s - \omega v +\mu s\\ -\phi s + \omega v + \mu v \end{array} \right) . \end{aligned}$$

To calculate \(\mathcal {R}_{0}\), we determine matrices F and V, given by

$$\begin{aligned} F(x_0) =\left( \begin{array}{ccc} \alpha s^* &{} 0 &{} \beta s^* \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ \end{array} \right) \; \text {and} \; V(x_0) =\left( \begin{array}{ccc} \mu +\gamma &{} 0 &{} 0 \\ -\beta _v &{} \mu _{v}+\eta &{} 0 \\ 0 &{} -\eta &{} \mu _{v} \\ \end{array} \right) . \end{aligned}$$

Using simple algebra to calculate \(V^{-1}\), we obtain

$$\begin{aligned} V^{-1}(x_0) =\left( \begin{array}{ccc} \frac{1}{\mu +\gamma } &{} 0 &{} 0 \\ \frac{\beta _{v}}{(\mu +\gamma )(\mu _{v}+\eta )} &{} \frac{1}{\mu _{v}+\eta } &{} 0 \\ \frac{\eta \beta _{v}}{\mu _{v}(\mu +\gamma )(\mu _{v}+\eta )} &{} \frac{\eta }{\mu _{v}(\mu _{v}+\eta )} &{} \frac{1}{\mu _{v}} \\ \end{array}\right) \end{aligned}$$

and the next generation matrix of the model with vaccination is given by

$$\begin{aligned} FV^{-1}(x_0) =\left( \begin{array}{ccc} \frac{\alpha s^*}{(\mu +\gamma )}+\frac{\beta \beta _{v} \eta s^*}{\mu _{v}(\mu +\gamma )(\mu _{v}+\eta )} &{} \frac{\beta \eta s^* }{\mu _{v}(\mu _{v}+\eta )} &{} \frac{\beta s^*}{\mu _{v}} \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ \end{array}\right) \end{aligned}$$

where \(\mathcal {R}_{0}=\rho (FV^{-1})\) and thus

$$\begin{aligned} \mathcal {R}_{0}= \frac{\alpha s^*}{(\mu +\gamma )}+\frac{\beta \beta _{v} \eta s^*}{\mu _{v}(\mu +\gamma )(\mu _{v}+\eta )}, \end{aligned}$$

That is,

$$\begin{aligned} \mathcal {R}_{0}(\phi ,\omega ) = \frac{\alpha (\mu +\omega )}{(\mu +\phi +\omega )(\mu +\gamma )} + \frac{\beta \beta _{v} \eta (\mu +\omega ) }{ \mu _{v}(\mu +\gamma )(\mu _{v}+\eta )(\mu +\phi +\omega )}. \end{aligned}$$

Appendix B Proof of Theorem 1

In this appendix, we provide a proof of Theorem 1. In our case, we have that \(\mathbf X =(s,v,r,s_v)^t\), \(\mathbf Z =(i,e_v,i_v)^t\) thus: \(\mathbf U _0(\mathbf X ^*,0)=(1-\rho ,\rho ,0,1,0,0,0)^t\),

$$\begin{aligned} H(\mathbf X ,\mathbf Z )=\left( \begin{array}{c} \mu -\beta s i_v - \alpha s i -\phi fs + \omega v -\mu s \\ \phi fs - \omega v - \mu v, \\ \gamma i -\mu r \\ \mu _{v} -\mu _{v}s_{v}-\beta _{v}s_{v}i \end{array} \right) \; \text {and} \; G(\mathbf X,Z )=\left( \begin{array}{c} \beta s i_v + \alpha s i- (\gamma +\mu ) i, \\ \beta _{v}s_{v}i-(\mu _{v} + \eta )e_{v},\\ \eta e_{v} - \mu _{v} i_{v} \\ \end{array} \right) . \end{aligned}$$

To show (H1), we calculate

$$\begin{aligned} H(\mathbf X ,0)=\left( \begin{array}{c} \mu -\phi fs + \omega v -\mu s \\ \phi fs - \omega v - \mu v, \\ -\mu r \\ \mu _{v} -\mu _{v}s_{v} \end{array} \right) \end{aligned}$$

and then the Jacobian matrix of H at \(\mathbf X ^*\) to study if its eigenvalues have negative real part

$$\begin{aligned} J_H(\mathbf X* ,0)=\left( \begin{array}{c c c c} -(\phi f+\mu ) &{} \omega &{} 0 &{} 0 \\ \phi f&{} -(\omega +\mu ) &{} 0 &{} \\ 0 &{} 0 &{} -\mu &{} \\ 0 &{} 0 &{} 0 &{} -\mu _{v} \end{array} \right) . \end{aligned}$$

Therefore, it can be easily checked that all the eigenvalues of the matrix above have negative real part and then \(\mathbf X ^*\) is l.a.s of the system \(\frac{d\mathbf X }{dt} =H(\mathbf X ,0)\).

To show (H2), first we calculate the matrix A

$$\begin{aligned} A= D_\mathbf{Z }G(\mathbf X ^*,0)&= \left( \begin{array}{c c c} \alpha (1-\rho ) - (\gamma +\mu ) &{} 0 &{} \beta (1-\rho ) \\ \beta _{v} &{} -(\mu _{v} + \eta ) &{} 0\\ 0 &{} \eta &{} - \mu _{v} \end{array} \right) \\&= \left( \begin{array}{c c c} (\gamma + \mu ) (R_d(1-\rho ) - 1) &{} 0 &{} \beta (1-\rho ) \\ \beta _{v} &{} -(\mu _{v} + \eta ) &{} 0\\ 0 &{} \eta &{} - \mu _{v} \end{array} \right) , \end{aligned}$$

where \(\rho =\frac{\phi f}{\mu +\omega +\phi f}\). Since \(\mathcal {R}_0<1\), it follows that \((1-\rho )R_d<1\) as well and thus, the off elements of the diagonal of the matrix A have negative sign which means that A is an M-matrix. Second, the vector \(\hat{G}\) can be expressed as \(\hat{G}(\mathbf X,Z )=G(\mathbf X,Z )-A\mathbf Z \) and after some simple manipulations

$$\begin{aligned} \hat{G}(\mathbf X,Z )=\left( \begin{array}{c} (\alpha i+ \beta i_v)(1-\rho -s) \\ 0\\ 0 \end{array}\right) \end{aligned}$$

Since \(0<s<1-\rho \), then the last condition holds with \(\hat{G}(\mathbf X,Z )\ge 0\) and therefore \(\mathbf U _0\) is g.a.s.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valega-Mackenzie, W., Ríos-Soto, K.R. Can Vaccination Save a Zika Virus Epidemic?. Bull Math Biol 80, 598–625 (2018). https://doi.org/10.1007/s11538-018-0393-7

Download citation

Keywords

  • Zika virus
  • Epidemic model
  • Vaccination
  • Epidemiology