Genotypic Selection in Spatially Heterogeneous Producer-Grazer Systems Subject to Stoichiometric Constraints

Abstract

Various environmental conditions may exert selection pressures leading to adaptation of stoichiometrically important traits, such as organismal nutritional content or growth rate. We use theoretical approaches to explore the connections between genotypic selection and ecological stoichiometry in spatially heterogeneous environments. We present models of a producer and two grazing genotypes with different stoichiometric phosphorus/carbon ratios under spatially homogenous and heterogeneous conditions. Numerical experiments predict that selection of a single genotype, co-persistence of both genotypes, and extinction are possible outcomes depending on environmental conditions. Our results indicated that in spatially homogenous settings, co-persistence of both genotypes can occur when population dynamics oscillate on limit cycles near a key stoichiometric threshold on food quality. Under spatially heterogeneous settings, dynamics are more complex, where co-persistence is observed on limit cycles, as well as stable equilibria.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    Link url to supplementary materials.

References

  1. Abrams PA (2000) The evolution of predator-prey interactions: theory and evidence. Ann Rev Ecol Syst 31(1):79–105

    MathSciNet  Article  Google Scholar 

  2. Andersen T (1997) Pelagic nutrient cycles; herbivores as sources and sinks. Springer, Berlin

    Google Scholar 

  3. Andersen T, Elser JJ, Hessen DO (2004) Stoichiometry and population dynamics. Ecol Lett 7(9):884–900

    Article  Google Scholar 

  4. Ascher UM, Petzold LR (1998) Computer methods for ordinary differential equations and differential-algebraic equations, vol 61. SIAM, Philadelphia

    Google Scholar 

  5. Barry RG, Chorley RJ (2003) Atmosphere. Weather and climate. Routledge, London

    Google Scholar 

  6. Bird RB, Stewart WE, Lightfoot EN (2004) Transport phenomena. 2002. Wiley, New York

    Google Scholar 

  7. Cantrell RS, Cosner C, Lou Y (2010a) Evolution of dispersal in heterogeneous landscapes. In: Cantrell S, Cosner C, Ruan S (eds) Spatial Ecology. CRC Press, Taylor & Francis Group, pp 213–229

    Google Scholar 

  8. Cantrell S, Cosner C, Ruan S (2010b) Spatial Ecology. CRC Press, Taylor & Francis Group

  9. Dissanayake C (2016) Finite element simulation of space/time behavior in a two species ecological stoichiometric model. Ph.D. thesis, Texas Tech University

  10. Elser J (2006) Biological stoichiometry: a chemical bridge between ecosystem ecology and evolutionary biology. Am Nat 168(S6):S25–S35

    Article  Google Scholar 

  11. Gresho PM, Sani RL (1998) Incompressible flow and the finite element method. Volume 1: advection–diffusion and isothermal laminar flow. Wiley, New York

    Google Scholar 

  12. Grover JP (2004) Predation, competition, and nutrient recycling: a stoichiometric approach with multiple nutrients. J Theor Biol 229(1):31–43

    MathSciNet  Article  Google Scholar 

  13. Hanski I (2010) Incorporating the spatial configuration of the habitat into ecology and evolutionary biology. In: Cantrell S, Cosner C, Ruan S (eds) Spatial Ecology. CRC Press, Taylor & Francis Group, pp 167–188

    Google Scholar 

  14. Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM, Williams A, Stanley KS (2005) An overview of the Trilinos project. ACM Trans Math Softw 31(3):397–423. https://doi.org/10.1145/1089014.1089021

    MathSciNet  Article  MATH  Google Scholar 

  15. Hessen DO, Elser JJ, Sterner RW, Urabe J (2013) Ecological stoichiometry: an elementary approach using basic principles. Limnol Oceanogr 58(6):2219–2236

    Article  Google Scholar 

  16. Holt RD, Barfield M (2010) Metapopulation perspectives on the evolution of species’ niches. In: Cantrell S, Cosner C, Ruan S (eds) Spatial Ecology. CRC Press, Taylor & Francis Group, pp 188–211

    Google Scholar 

  17. Huisman J, Sharples J, Stroom JM, Visser PM, Kardinaal WEA, Verspagen JM, Sommeijer B (2004) Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85(11):2960–2970

    Article  Google Scholar 

  18. Imboden DM, Wüest A (1995) Mixing mechanisms in lakes. Physics and chemistry of lakes. Springer, Berlin, pp 83–138

    Google Scholar 

  19. Johnson C (2012) Numerical solution of partial differential equations by the finite element method. Courier Corporation

  20. Kay AD, Ashton IW, Gorokhova E, Kerkhoff AJ, Liess A, Litchman E (2005) Toward a stoichiometric framework for evolutionary biology. Oikos 109(1):6–17

    Article  Google Scholar 

  21. Kelley CT (2003) Solving nonlinear equations with Newton’s method. SIAM, Philadelphia

    Google Scholar 

  22. Kirk JT (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  23. Kuefler D, Avgar T, Fryxell JM (2012) Rotifer population spread in relation to food, density and predation risk in an experimental system. J Anim Ecol 81(2):323–329

    Article  Google Scholar 

  24. Kuefler D, Avgar T, Fryxell JM (2013) Density-and resource-dependent movement characteristics in a rotifer. Funct Ecol 27(2):323–328

    Article  Google Scholar 

  25. Loladze I, Kuang Y, Elser JJ (2000) Stoichiometry in producer-grazer systems: linking energy flow with element cycling. Bull Math Biol 62(6):1137–1162

    Article  Google Scholar 

  26. Loladze I, Kuang Y, Elser JJ, Fagan WF (2004) Competition and stoichiometry: coexistence of two predators on one prey. Theor Popul Biol 65(1):1–15

    Article  Google Scholar 

  27. Long K, Kirby R, van Bloemen Waanders B (2010) Unified embedded parallel finite element computations via software-based Fréchet differentiation. SIAM J Sci Comput 32(6):3323–3351

    MathSciNet  Article  Google Scholar 

  28. Lorke A (1998) Investigation of turbulent mixing in shallow lakes using temperature microstructure measurements. Aquat Sci Res Across Bound 60(3):210–219

    Article  Google Scholar 

  29. Meng X, Zhang L (2016) Evolutionary dynamics in a Lotka–Volterra competition model with impulsive periodic disturbance. Math Methods Appl Sci 39(2):177–188

    MathSciNet  Article  Google Scholar 

  30. Metz JA, Nisbet RM, Geritz SA (1992) How should we define ‘fitness’ for general ecological scenarios? Trends Ecol Evol 7(6):198–202

    Article  Google Scholar 

  31. Moody EK, Rugenski AT, Sabo JL, Turner BL, Elser JJ (2017) Does the growth rate hypothesis apply across temperatures? variation in the growth rate and body phosphorus of neotropical benthic grazers. Front Environ Sci 5:14

    Article  Google Scholar 

  32. Morozov A, Kuzenkov O (2016) Towards developing a general framework for modelling vertical migration in zooplankton. J Theor Biol 405:17–28

    MathSciNet  Article  Google Scholar 

  33. Peace A (2015) Effects of light, nutrients, and food chain length on trophic efficiencies in simple stoichiometric aquatic food chain models. Ecol Model 312:125–135

    Article  Google Scholar 

  34. Peace A, Zhao Y, Loladze I, Elser JJ, Kuang Y (2013) A stoichiometric producer-grazer model incorporating the effects of excess food-nutrient content on consumer dynamics. Math Biosci 244:107

    MathSciNet  Article  Google Scholar 

  35. Peace A, Wang H, Kuang Y (2014) Dynamics of a producer-grazer model incorporating the effects of excess food nutrient content on grazer’s growth. Bull Math Biol 76(9):2175–2197

    MathSciNet  Article  Google Scholar 

  36. Rana M, Dissanayake C, Juan L, Long K, Peace A (2019) Mechanistically derived heterogeneous producer-grazer model, subject to stoichiometric constraints. Math Biosci Engg 16(1):222–233. https://doi.org/10.3934/mbe.2019012

    Article  Google Scholar 

  37. Sala M, Stanley K, Heroux M (2006) Amesos: a set of general interfaces to sparse direct solver libraries. In: Proceedings of PARA’06 conference, Umea, Sweden

  38. Shu FH (1991) The physics of astrophysics, vol. 2: radiation. University Science Books, Mill Valley

    Google Scholar 

  39. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  40. Wang H, Kuang Y, Loladze I (2008) Dynamics of a mechanistically derived stoichiometric producer-grazer model. J Biol Dyn 2(3):286–296

    MathSciNet  Article  Google Scholar 

  41. Wang H, Sterner RW, Elser JJ (2012) On the “strict homeostasis” assumption in ecological stoichiometry. Ecol Model 243:81–88

    Article  Google Scholar 

  42. Weider LJ, Makino W, Acharya K, Glenn KL, Kyle M, Urabe J, Elser JJ (2005) Genotype \(\times \) environment interactions, stoichiometric food quality effects, and clonal coexistence in Daphnia pulex. Oecologia 143(4):537–547

    Article  Google Scholar 

  43. Yamamichi M, Meunier CL, Peace A, Prater C, Rúa MA (2015) Rapid evolution of a consumer stoichiometric trait destabilizes consumer–producer dynamics. Oikos 124(7):960–969

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lourdes Juan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 10700 KB)

Supplementary material 2 (mp4 10237 KB)

Supplementary material 3 (mp4 11373 KB)

Supplementary material 4 (mp4 9422 KB)

Supplementary material 5 (mp4 11295 KB)

Supplementary material 6 (mp4 6742 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dissanayake, C., Juan, L., Long, K.R. et al. Genotypic Selection in Spatially Heterogeneous Producer-Grazer Systems Subject to Stoichiometric Constraints. Bull Math Biol 81, 4726–4742 (2019). https://doi.org/10.1007/s11538-018-00559-9

Download citation

Keywords

  • Genotypic selection
  • Ecological stoichiometry
  • Diffusion
  • Population dynamics

Mathematics Subject Classification

  • 92D15
  • 92D25