Bulletin of Mathematical Biology

, Volume 81, Issue 5, pp 1369–1393 | Cite as

The Effects of Stochasticity on Pattern Formation in a Space- and Time-Discrete Predator–Prey System with Strong Allee Effect in the Prey

  • Joice Chaves Marques
  • Horst Malchow
  • Luiz Alberto Díaz Rodrigues
  • Diomar Cristina MistroEmail author


The effects of demographic and environmental noise on the vital dynamics and spatial pattern formation are studied for a predator–prey system with strong Allee effect in the prey species. Time and space are taken discrete. It is shown that noise can promote extinction depending on the growth and interaction parameters as well as the noise type and amplitude. The extinction risk increases with the noise amplitude; however, the environmental and demographic noise can have different effects on the risk of extinction. In space, the spatial structures obtained are blurred versions of the deterministic ones in most scenarios. In particular, the complex spatial structures that appear in the parameter domains where the deterministic local dynamics leads to extinction are robust to the density-dependent stochastic fluctuations but are disrupted with environmental noise.


Pattern formation Predator–prey system Allee effect Coupled map lattice Demographic noise Environmental noise 



This research was supported by FAPERGS through Edital FAPERGS 012/2013 processes 0414-2551/14-0.


  1. Allen JC, Schaffer WM, Rosko D (1993) Chaos reduces species extinction by amplifying local population noise. Nature 364:229–232CrossRefGoogle Scholar
  2. Bashkirtseva I, Ryashko L (2018) Noise-induced shifts in the population model with a weak Allee effect. Phys A 491:28–36MathSciNetCrossRefzbMATHGoogle Scholar
  3. Blomberg C (2006) Fluctuations for good and bad: the role of noise in living systems. Phys Life Rev 3:133–161CrossRefGoogle Scholar
  4. Brännström A, Sumpter DJT (2005) Coupled map lattice approximations for spatially explicit individual-based models of ecology. Bull Math Biol 67:663–682MathSciNetCrossRefzbMATHGoogle Scholar
  5. Brännström A, Sumpter DJT (2006) Stochastic analogues of deterministic single-species population models. Theor Popul Biol 69:442–451CrossRefzbMATHGoogle Scholar
  6. Carlos C, Braumann CA (2017) General population growth models with Allee effects in a random environment. Ecol Complex 30:26–33CrossRefGoogle Scholar
  7. Comins HN, Hassell MP, May RM (1992) The spatial dynamics of host-parasitoid systems. J Animal Ecol 61:735–748CrossRefGoogle Scholar
  8. Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trends Ecol Evol 14:405–410CrossRefGoogle Scholar
  9. Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, OxfordCrossRefGoogle Scholar
  10. Dennis B, Assas L, Elaydi S, Kwessi E, Livadiotis G (2016) Allee effects and resilience in stochastic populations. Theor Ecol 9:323–335CrossRefzbMATHGoogle Scholar
  11. Dennis B (2002) Allee effects in stochastic populations. Oikos 96:389–401CrossRefGoogle Scholar
  12. Dennis B, Taper ML (1994) Density dependence in time series observations of natural populations: estimation and testing. Ecol Monogr 64:205–224CrossRefGoogle Scholar
  13. Engen S, Bakke O, Islam A (1998) Demographic and environmental stochasticity—concepts and definitions. Biometrics 54:840–846CrossRefzbMATHGoogle Scholar
  14. Engen S, Lande R, Saether B-E (2003) Demographic stochasticity and Allee effects in populations with two sexes. Ecology 84(9):2378–2386CrossRefGoogle Scholar
  15. Goodsman DW, Koch D, Whitehouse C, Evenden M, Cooke B, Lewis MA (2016) Aggregation and a strong Allee effect in a cooperative outbreak insect. Ecol Appl 26(8):2623–2636CrossRefGoogle Scholar
  16. Halley JM, Iwasa Y (1998) Extinction rate of a population under both demographic and environmental stochasticity. Theor Popul Biol 53:1–15CrossRefzbMATHGoogle Scholar
  17. Hanski I (1991) Single-species metapopulation dynamics: concepts, models and observations. Biol J Linnean Soc 42:17–38CrossRefGoogle Scholar
  18. Hassell MP, Comins HN, May RM (1991) Spatial structure and chaos in insect population dynamics. Nature 353:255–258CrossRefGoogle Scholar
  19. Heino M, Sabadell M (2003) Influence of coloured noise on the extinction risk in structured population models. Biol Conserv 110:315–325CrossRefGoogle Scholar
  20. Kot M, Lewis MA, van der Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77:2027–2042CrossRefGoogle Scholar
  21. Kramer AM, Dennis B, Liebhold AM, Drake JM (2009) The evidence for Allee effects. Popul Ecol 51:341–354CrossRefGoogle Scholar
  22. Lewis MA, Kareiva P (1993) Allee dynamics and the spread of invading organisms. Theor Popul Biol 43(2):141–158CrossRefzbMATHGoogle Scholar
  23. Malchow H, Hilker FM, Petrovskii SV (2004) Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system. Discret Continuous Dyn Syst B 4(3):705–711MathSciNetCrossRefzbMATHGoogle Scholar
  24. Malchow H, Petrovskii SV, Medvinsky AB (2001) Pattern formation in models of plankton dynamics. A synthesis. Oceanol Acta 24(5):479–487CrossRefGoogle Scholar
  25. Malchow H, Petrovskii S, Venturino E (2008) Spatiotemporal patterns in ecology and epidemiology: theory, models, simulations. Mathematical and computational biology series. Chapman & Hall / CRC Press, Boca RatonzbMATHGoogle Scholar
  26. Meinhardt H (1982) Models of biological pattern formation. Academic Press, LondonGoogle Scholar
  27. Melbourne BA, Hastings A (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature 454:100–103CrossRefGoogle Scholar
  28. Mistro DC, Rodrigues LAD, Petrovskii S (2012) Spatiotemporal complexity of biological invasion in a space- and time-discrete predator-prey system with the strong Allee effect. Ecol Complex 9:16–32CrossRefGoogle Scholar
  29. Morales JM (1999) Viability in a pink environment: why ”white noise” models can be dangerous. Ecol Lett 2:228–232CrossRefGoogle Scholar
  30. Morozov A, Petrovskii S, Li B-L (2006) Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect. J Theor Biol 238(1):18–35MathSciNetCrossRefGoogle Scholar
  31. Okubo A, Levin SA (2001) Diffusion and ecological problems: modern perspectives, 2nd edn. Springer, New YorkCrossRefzbMATHGoogle Scholar
  32. Petrovskii SV, Malchow H (1999) A minimal model of pattern formation in a prey–predator system. Math Comput Model 29:49–63MathSciNetCrossRefzbMATHGoogle Scholar
  33. Petrovskii SV, Malchow H (2001) Wave of chaos: New mechanism of pattern formation in spatiotemporal population dynamics. Theor Popul Biol 59:157–174CrossRefzbMATHGoogle Scholar
  34. Petrovskii S, Morozov A, Venturino E (2002) Allee effect makes possible patchy invasion in a predator–prey system. Ecol Lett 5(3):345–352CrossRefGoogle Scholar
  35. Ripa J, Lundberg P (1996) Noise colour and the risk of population extinctions. Proc R Soc Lond B 263:1751–1753CrossRefGoogle Scholar
  36. Rodrigues LAD, Mistro DC, Petrovskii S (2011) Pattern formation, long-term transients, and the Turing–Hopf bifurcation in a space- and time-discrete predator-prey system. Bull Math Biol 73:1812–1840MathSciNetCrossRefzbMATHGoogle Scholar
  37. Rodrigues LAD, Mistro DC, Petrovskii S (2012) Pattern formation in a space- and time-discrete predator-prey system with strong Allee effect. Theor Ecol 5:341–362CrossRefGoogle Scholar
  38. Rodrigues LAD, Varriale MC, Godoy WAC, Mistro DC (2013) Spatiotemporal dynamics of an insect population in response to chemical substances. Ecol Complex 16:51–58CrossRefGoogle Scholar
  39. Segel LA, Jackson JL (1972) Dissipative structure: an explanation and an ecological example. J Theor Biol 37:545–559CrossRefGoogle Scholar
  40. Stephens PA, Sutherland WJ (1999) Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol Evol 14:401405CrossRefGoogle Scholar
  41. Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the Allee effect? Oikos 87:185–190CrossRefGoogle Scholar
  42. Taylor CM, Hastings A (2005) Allee effects in biological invasions. Ecol Lett 8(8):895–908CrossRefGoogle Scholar
  43. Teixeira Alves M, Hilker FM (2017) Hunting cooperation and Allee effects in predators. J Theor Biol 419:13–22MathSciNetCrossRefzbMATHGoogle Scholar
  44. Veit RR, Lewis MA (1996) Dispersal, population growth and the Allee effect: dynamics of the house finch invasion of eastern North America. Am Nat 148(2):255–274CrossRefGoogle Scholar
  45. Wang M-H, Kot M (2001) Speeds of invasion in a model with strong or weak Allee effects. Math Biosci 171:83–97MathSciNetCrossRefzbMATHGoogle Scholar
  46. Wang M-H, Kot M, Neubert MG (2002) Integrodifference equations, Allee effects, and invasions. J Math Biol 44:150–168MathSciNetCrossRefzbMATHGoogle Scholar
  47. White SM, White KAJ (2005) Relating coupled map lattices to integro-difference equations: dispersal-driven instabilities in coupled map lattices. J Theor Biol 235:463–475MathSciNetCrossRefGoogle Scholar
  48. Wichmann MC, Johst K, Schwager M, Blasius B, Jeltsch F (2005) Extinction risk, coloured noise and scaling of variance. Theor Popul Biol 68:29–40CrossRefzbMATHGoogle Scholar

Copyright information

© Society for Mathematical Biology 2019

Authors and Affiliations

  1. 1.Federal University of Santa MariaSanta MariaBrazil
  2. 2.PPGMap, UFRGSPorto AlegreBrazil
  3. 3.Institute of Environmental Systems ResearchOsnabrück UniversityOsnabrückGermany
  4. 4.Department of MathematicsFederal University of Santa MariaSanta MariaBrazil

Personalised recommendations