Skip to main content

Advertisement

Log in

A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We formulate and analyse a stochastic epidemic model for the transmission dynamics of a tick-borne disease in a single population using a continuous-time Markov chain approach. The stochastic model is based on an existing deterministic metapopulation tick-borne disease model. We compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in tick-borne disease dynamics. The probability of disease extinction and that of a major outbreak are computed and approximated using the multitype Galton–Watson branching process and numerical simulations, respectively. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that a disease outbreak is more likely if the disease is introduced by infected deer as opposed to infected ticks. These insights demonstrate the importance of host movement in the expansion of tick-borne diseases into new geographic areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen LJS (2008) An introduction to stochastic epidemic models. In: Brauer F, van den Driessche P, Wu J (eds) Mathematical epidemiology. Springer, Berlin, pp 77–128

    Google Scholar 

  • Allen LJS (2010) An introduction to stochastic processes with applications to biology, 2nd edn. Chapman and Hall/CRC Press, Boca Ratton

    Google Scholar 

  • Allen LJS (2012) Branching processes. Encyclopedia of theoretical ecology. University of California Press, Berkeley

    Google Scholar 

  • Allen LJS (2015) Stochastic population and epidemic models: persistence and extinction. Mathematical biosciences institute lecture series, stochastics in biological systems, vol 1.3. Springer International Publishing, Berlin

    Book  Google Scholar 

  • Allen LJS, Burgin AM (2000) Comparison of deterministic and stochastic SIS and SIR models in discrete time. Math Biosci 163:1–33

    Article  MathSciNet  MATH  Google Scholar 

  • Allen LJS, Lahodny GE Jr (2012) Extinction thresholds in deterministic and stochastic epidemic models. J Biol Dyn 6:590–611

    Article  Google Scholar 

  • Allen LJS, van den Driessche P (2013) Relations between deterministic and stochastic thresholds for disease extinction in continuous- and discrete-time infectious disease models. Math Biosci 243:99–108

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson BE, Sims KG, Olson JG, Childs JE, Piesman JF, Happ CM, Maupin GO, Johnson BJB (1993) Amblyomma americanum: a potential vector of human ehrlichiosis. Am J Trop Med Hyg 49:239–244

    Article  Google Scholar 

  • Awerbuch TE, Sandberg S (1995) Trends and oscillations in tick population dynamics. J Theor Biol 175:511–516

    Article  Google Scholar 

  • Ball F (1983) The threshold behaviour of epidemic models. J Appl Probab 20:227–241

    Article  MathSciNet  MATH  Google Scholar 

  • Ball F, Donnelly P (1995) Strong approximations for epidemic models. Stoch Process Appl 55:1–21

    Article  MathSciNet  MATH  Google Scholar 

  • Bartlett MS (1956) Deterministic and stochastic models for recurrent epidemics. In: Proceedings of the third Berkeley symposium mathematical statistics and probability, vol 4. University of California Press, Berkeley, pp 81–109

  • Bartlett MS (1960) Stochastic population models. Methuen, London

    MATH  Google Scholar 

  • Bartlett MS (1964) The relevance of stochastic models for large-scale epidemiological phenomena. Appl Stat 13:2–8. doi:10.2307/2985217

    Article  MathSciNet  MATH  Google Scholar 

  • CDC (2015) Tick-borne diseases of the United States: a reference manual for health care providers, 3rd edn. CDC Stacks-Public Health Publications, Atlanta

  • Dantas-Torres F, Chomel BB, Otranto D (2012) Ticks and tick-borne diseases: a one health perspective review. Trends Parasitol 28:437–446

    Article  Google Scholar 

  • Das A, Lele SR, Glass GE, Shields T, Petz J (2002) Modelling a discrete spatial response using generalized linear mixed models: application to Lyme disease vectors. Int J Geogr Inf Sci 16:151–166

    Article  Google Scholar 

  • Diekmann O, Heesterbeek JA, Metz JA (1990) On the definition and computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J Math Biol 28(4):365–382

    Article  MathSciNet  MATH  Google Scholar 

  • Ding W (2007) Optimal control on hybrid ODE systems with application to a tick disease model. Math Biosci Eng 4:633–659

    Article  MathSciNet  MATH  Google Scholar 

  • Furman DP, Loomis EC (1984) The ticks of California (Acari: Ixodida). Bulletin of the California Insect Survey, vol 25. University of California Press, Berkeley

    Google Scholar 

  • Gaff H (2011) Preliminary analysis of an agent-based model for a tick-borne disease. Math Biosci Eng 8:463–473

    Article  MathSciNet  MATH  Google Scholar 

  • Gaff HD, Gross JL (2007) Modeling tick-borne disease: a metapopulation model. Bull Math Biol 69:265–288

    Article  MathSciNet  MATH  Google Scholar 

  • Gaff HD, Nadolny R (2013) Identifying requirements for the invasion of a tick species and tick-borne pathogen through TICKSIM. Math Biosci Eng 10:625–635

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh M, Pugliese A (2004) Seasonal population dynamics of ticks, and its influence on infection transmission: a semi-discrete approach. Bull Math Biol 66:1659–1684

    Article  MathSciNet  MATH  Google Scholar 

  • Glass GE, Schwartz BS, Morgan JM, Johnson DT, Noy PM, Israel E (1995) Environmental risk factors for Lyme disease identified with geographic information systems. Am J Public Health 85:944–948

    Article  Google Scholar 

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653

    Article  MathSciNet  MATH  Google Scholar 

  • Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129:S3–S14

    Article  Google Scholar 

  • Karlin S, Taylor H (1975) A first course in stochastic processes, 2nd edn. Academic Press, New York

    MATH  Google Scholar 

  • Khan A, Hassan M, Imran M (2013) The effects of a backward bifurcation on a continuous time Markov Chain model for the transmission dynamics of single strain dengue virus. Appl Math 4:663–674. doi:10.4236/am.2013.44091

    Article  Google Scholar 

  • Lahodny GE Jr, Allen LJS (2013) Probability of a disease outbreak in stochastic multipatch epidemic models. Bull Math Biol doi:10.1007/s11538-013-9848-z

  • Lahodny GE, Gautam R, Ivanek R (2015) Estimating the probability of an extinction or major outbreak for an environmentally transmitted infectious disease. J Biol Dyn 9:128–155

    Article  MathSciNet  Google Scholar 

  • Lloyd AL, Zhang J, Root AM (2007) Stochasticity and heterogeneity in host-vector models. J R Soc Interface 4:851–863

    Article  Google Scholar 

  • Maliyoni M, Mwamtobe PMM, Hove-Musekwa SD, Tchuenche JM (2012) Modelling the role of diagnosis, treatment, and health education on multidrug-resistant tuberculosis dynamics. ISRN: Biomath doi:10.5402/2012/459829

  • Masika PJ, Sonandi A, van Averbeke W (1997) Tick control by small-scale cattle farmers in the central Eastern Cape Province, South Africa. J S Afr Vet Assoc 68:45–48

    Google Scholar 

  • McCormack RK, Allen LJS (2005) Disease emergence in deterministic and stochastic models for host and pathogen. Appl Math Comput 168:1281–1305

    MathSciNet  MATH  Google Scholar 

  • Mount GA, Haile DG (1989) Computer simulation of population dynamics of the American dog tick (Acari: Ixodidae). J Med Entomol 26:60–76

    Article  Google Scholar 

  • Mount GA, Haile DG, Barnard DR, Daniels E (1993) New version of LSTSIM for computer simulation of Amblyomma americanum (Acari: Ixodidae) population dynamics. J Med Entomol 30:843–857

    Article  Google Scholar 

  • Mount GA, Haile DG, Daniels E (1997) Simulation of management strategies for the blacklegged tick (Acari: Ixodidae) and the Lyme disease spirochete, Borrelia burgdorferi. J Med Entomol 90:672–683

    Article  Google Scholar 

  • Piesman J, Eisen L (2008) Prevention of tick-borne diseases. Annu Rev Entomol 53:323–343

    Article  Google Scholar 

  • Randolph S (1999) Epidemiological uses of a population model for the tick Rhipicephalus appendiculatus. Trop Med Int Health 4:A34–A42

    Article  Google Scholar 

  • Sandberg S, Awerbuch TE, Spielman A (1992) A comprehensive multiple matrix model representing the life cycle of the tick that transmits the age of Lyme disease. J Theor Biol 157:203–220

    Article  Google Scholar 

  • Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Whittle P (1955) The outcome of a stochastic epidemic: a note on Bailey’s paper. Biometrika 42:116–122

    MathSciNet  MATH  Google Scholar 

  • Wu X, Duvvuri VRSK, Wu J (2010) Modelling the dynamical temperature influence on tick Ixodes scapularis population. International Environmental Modelling and Software Society, International Congress on Environmental Modelling and Software

Download references

Acknowledgements

MM thanks the University of Malawi (Chancellor College) for financial support. KSG thanks the National Research Foundation of South Africa and the University of KwaZulu-Natal for ongoing support. The authors are grateful to two anonymous reviewers for their valuable suggestions which improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milliward Maliyoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maliyoni, M., Chirove, F., Gaff, H.D. et al. A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence. Bull Math Biol 79, 1999–2021 (2017). https://doi.org/10.1007/s11538-017-0317-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0317-y

Keywords

Navigation