Skip to main content
Log in

Additive Damage Models for Cellular Pharmacodynamics of Radiation–Chemotherapy Combinations

  • Special Issue : Mathematical Oncology
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Many cancer patients receive combination treatments with radiation and chemotherapy. Available mathematical models for cellular pharmacodynamics have limited ability to represent observed in vitro responses to radiochemotherapy. Here, a family of additive damage models is proposed to describe cell kill resulting from radiochemotherapy with fixed schedule and variable doses. The pathways by which the agents produce cellular damage are assumed to converge in a single cell death process, so that survival depends on total damage, which can be represented as a sum of contributions from the various damage pathways. Heterogeneity in response across the cell population is ascribed to variations in the damage threshold for cell kill. The family of proposed models includes effects of one or two pathways of damage for each agent, saturation in drug responses, and cooperative or antagonistic interactions between agents. Models from this family with 4–7 unknown parameters are tested for their ability to fit 218 in vitro literature data sets for a range of drugs and cell lines. Overall, the additive damage models are found to outperform models based on the existing concept of independent cell kill, according to the corrected Akaike Information Criterion. The results are used to assess the importance of the various effects included in the models. These additive damage models have potential applications to the optimization of treatment and to the analysis and interpretation of in vitro screening data for new drug–radiation combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bachman JW, Hillen T (2013) Mathematical optimization of the combination of radiation and differentiation therapies for cancer. Front Oncol 3:52

    Article  Google Scholar 

  • Banuelos CA, Banath JP, MacPhail SH, Zhao J, Reitsema T, Olive PL (2007) Radiosensitization by the histone deacetylase inhibitor PCI-24781. Clin Cancer Res 13:6816–6826

    Article  Google Scholar 

  • Barazzuol L, Burnet NG, Jena R, Jones B, Jefferies SJ, Kirkby NF (2010) A mathematical model of brain tumour response to radiotherapy and chemotherapy considering radiobiological aspects. J Theor Biol 262:553–565

    Article  Google Scholar 

  • Begg AC, van der Kolk PJ, Dewit L, Bartelink H (1986) Radiosensitization by cisplatin of RIF1 tumour cells in vitro. Int J Radiat Biol Relat Stud Phys Chem Med 50:871–884

    Article  Google Scholar 

  • Chen Y, Pandya KJ, Hyrien O, Keng PC, Smudzin T, Anderson J, Qazi R, Smith B, Watson TJ, Feins RH, Johnstone DW (2011) Preclinical and pilot clinical studies of docetaxel chemoradiation for stage III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 80:1358–1364

    Article  Google Scholar 

  • Chou TC (2010) Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res 70:440–446

    Article  Google Scholar 

  • Chou TC, Talalay P (1981) Generalized equations for the analysis of inhibitions of Michaelis–Menten and higher-order kinetic systems with 2 or more mutually exclusive and non-exclusive inhibitors. Eur J Biochem 115:207–216

    Article  Google Scholar 

  • Chou TC, Talalay P (1984) Quantitative-analysis of dose-effect relationships—the combined effects of multiple-drugs or enzyme-inhibitors. Adv Enzyme Regul 22:27–55

    Article  Google Scholar 

  • Choy H, Rodriguez FF, Koester S, Hilsenbeck S, Von Hoff DD (1993) Investigation of taxol as a potential radiation sensitizer. Cancer 71:3774–3778

    Article  Google Scholar 

  • Cook JA, DeGraff W, Teague D, Liebmann JE (1993) Radiation sensitization of chinese hamster V79 cells by paclitaxel. Radiat Oncol Investig 1:110

    Article  Google Scholar 

  • Dale RG, Jones B (2007) Radiobiological modelling in radiation oncology. British Institute of Radiology, London

    Book  Google Scholar 

  • Dias JD, Guse K, Nokisalmi P, Eriksson M, Chen DT, Diaconu I, Tenhunen M, Liikanen I, Grenman R, Savontaus M, Pesonen S, Cerullo V, Hemminki A (2010) Multimodal approach using oncolytic adenovirus, cetuximab, chemotherapy and radiotherapy in HNSCC low passage tumour cell cultures. Eur J Cancer 46:625–635

    Article  Google Scholar 

  • El-Kareh AW, Labes RE, Secomb TW (2008) Cell cycle checkpoint models for cellular pharmacology of paclitaxel and platinum drugs. Aaps J 10:15–34

    Article  Google Scholar 

  • El-Kareh AW, Secomb TW (2003) A mathematical model for cisplatin cellular pharmacodynamics. Neoplasia 5:161–169

    Article  Google Scholar 

  • El-Kareh AW, Secomb TW (2005) Two-mechanism peak concentration model for cellular pharmacodynamics of doxorubicin. Neoplasia 7:705–713

    Article  Google Scholar 

  • Erlich E, McCall AR, Potkul RK, Walter S, Vaughan A (1996) Paclitaxel is only a weak radiosensitizer of human cervical carcinoma cell lines. Gynecol Oncol 60:251–254

    Article  Google Scholar 

  • Flentje M, Eble M, Haner U, Trinh S, Wannenmacher M (1992) Additive effects of cisplatin and radiation in human tumor cells under oxic conditions. Radiother Oncol 24:60–63

    Article  Google Scholar 

  • Folkvord S, Flatmark K, Seierstad T, Roe K, Rasmussen H, Ree AH (2008) Inhibitory effects of oxaliplatin in experimental radiation treatment of colorectal carcinoma: Does oxaliplatin improve 5-fluorouracil-dependent radiosensitivity? Radiother Oncol 86:428–434

    Article  Google Scholar 

  • Geard CR, Jones JM (1994) Radiation and taxol effects on synchronized human cervical carcinoma cells. Int J Radiat Oncol Biol Phys 29:565–569

    Article  Google Scholar 

  • Gladstone M, Frederick B, Zheng D, Edwards A, Yoon P, Stickel S, DeLaney T, Chan DC, Raben D, Su TT (2012) A translation inhibitor identified in a Drosophila screen enhances the effect of ionizing radiation and taxol in mammalian models of cancer. Dis Model Mech 5:342–350

    Article  Google Scholar 

  • Gonzalez VM, Fuertes MA, Alonso C, Perez JM (2001) Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 59:657–663

    Article  Google Scholar 

  • Gupta N, Hu LJ, Deen DF (1997) Cytotoxicity and cell-cycle effects of paclitaxel when used as a single agent and in combination with ionizing radiation. Int J Radiat Oncol Biol Phys 37:885–895

    Article  Google Scholar 

  • Hara T, Omura-Minamisawa M, Chao C, Nakagami Y, Ito M, Inoue T (2005) Bcl-2 inhibitors potentiate the cytotoxic effects of radiation in Bcl-2 overexpressing radioresistant tumor cells. Int J Radiat Oncol Biol Phys 61:517–528

    Article  Google Scholar 

  • Hara T, Omura-Minamisawa M, Kang Y, Cheng C, Inoue T (2008) Flavopiridol potentiates the cytotoxic effects of radiation in radioresistant tumor cells in which p53 is mutated or Bcl-2 is overexpressed. Int J Radiat Oncol Biol Phys 71:1485–1495

    Article  Google Scholar 

  • Hicks KO, Pruijn FB, Secomb TW, Hay MP, Hsu R, Brown JM, Denny WA, Dewhirst MW, Wilson WR (2006) Use of three-dimensional tissue cultures to model extravascular transport and predict in vivo activity of hypoxia-targeted anticancer drugs. J Natl Cancer Inst 98:1118–1128

    Article  Google Scholar 

  • Hsu HW, Gridley DS, Kim PD, Hu S, de Necochea-Campion R, Ferris RL, Chen CS, Mirshahidi S (2013) Linifanib (ABT-869) enhances radiosensitivity of head and neck squamous cell carcinoma cells. Oral Oncol 49:591–597

    Article  Google Scholar 

  • Hurvich CM, Tsai CL (1991) Bias of the corrected AIC criterion for underfitted regression and time-series models. Biometrika 78:499–509

    MathSciNet  MATH  Google Scholar 

  • Ingram ML, Redpath JL (1997) Subadditive interaction of radiation and Taxol in vitro. Int J Radiat Oncol Biol Phys 37:1139–1144

    Article  Google Scholar 

  • Jones LB, Secomb TW, Dewhirst MW, El-Kareh AW (2014) The additive damage model: a mathematical model for cellular responses to drug combinations. J Theor Biol 357:10–20

    Article  MathSciNet  Google Scholar 

  • Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265

    Article  Google Scholar 

  • Kerr DJ, Kerr AM, Freshney RI, Kaye SB (1986) Comparative intracellular uptake of adriamycin and 4’-deoxydoxorubicin by non-small cell lung tumor cells in culture and its relationship to cell survival. Biochem Pharmacol 35:2817–2823

    Article  Google Scholar 

  • Kurdoglu B, Cheong N, Guan J, Corn BW, Curran WJ Jr, Iliakis G (1999) Apoptosis as a predictor of paclitaxel-induced radiosensitization in human tumor cell lines. Clin Cancer Res 5:2580–2587

    Google Scholar 

  • Latz D, Fleckenstein K, Eble M, Blatter J, Wannenmacher M, Weber KJ (1998) Radiosensitizing potential of gemcitabine (2’,2’-difluoro-2’-deoxycytidine) within the cell cycle in vitro. Int J Radiat Oncol Biol Phys 41:875–882

    Article  Google Scholar 

  • Leonard CE, Chan DC, Chou TC, Kumar R, Bunn PA (1996) Paclitaxel enhances in vitro radiosensitivity of squamous carcinoma cell lines of the head and neck. Cancer Res 56:5198–5204

    Google Scholar 

  • Lieberthal W, Triaca V, Levine J (1996) Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis versus necrosis. Am J Physiol 270:F700–F708

    Google Scholar 

  • Liebmann J, Cook JA, Fisher J, Teague D, Mitchell JB (1994a) Changes in radiation survival curve parameters in human tumor and rodent cells exposed to paclitaxel (Taxol). Int J Radiat Oncol Biol Phys 29:559–564

    Article  Google Scholar 

  • Liebmann J, Cook JA, Fisher J, Teague D, Mitchell JB (1994b) In vitro studies of Taxol as a radiation sensitizer in human tumor cells. J Natl Cancer Inst 86:441–446

    Article  Google Scholar 

  • Liu M, Ma S, Liu M, Hou Y, Liang B, Su X, Liu X (2014) Synergistic killing of lung cancer cells by cisplatin and radiation via autophagy and apoptosis. Oncol Lett 7:1903–1910

    Article  Google Scholar 

  • Lokeshwar BL, Ferrell SM, Block NL (1995) Enhancement of radiation response of prostatic carcinoma by taxol: therapeutic potential for late-stage malignancy. Anticancer Res 15:93–98

    Google Scholar 

  • Lynam-Lennon N, Reynolds JV, Pidgeon GP, Lysaght J, Marignol L, Maher SG (2010) Alterations in DNA repair efficiency are involved in the radioresistance of esophageal adenocarcinoma. Radiat Res 174:703–711

    Article  Google Scholar 

  • Mansfield DC, Kyula JN, Rosenfelder N, Chao-Chu J, Kramer-Marek G, Khan AA, Roulstone V, McLaughlin M, Melcher AA, Vile RG, Pandha HS, Khoo V, Harrington KJ (2016) Oncolytic vaccinia virus as a vector for therapeutic sodium iodide symporter gene therapy in prostate cancer. Gene Ther 23:357–368

    Article  Google Scholar 

  • Marchesini R, Colombo A, Caserini C, Perego P, Supino R, Capranico G, Tronconi M, Zunino F (1996) Interaction of ionizing radiation with topotecan in two human tumor cell lines. Int J Cancer 66:342–346

    Article  Google Scholar 

  • Masuda H, Ozols RF, Lai GM, Fojo A, Rothenberg M, Hamilton TC (1988) Increased DNA repair as a mechanism of acquired resistance to cis-diamminedichloroplatinum (II) in human ovarian cancer cell lines. Cancer Res 48:5713–5716

    Google Scholar 

  • Minarik L, Hall EJ (1994) Taxol in combination with acute and low dose rate irradiation. Radiother Oncol 32:124–128

    Article  Google Scholar 

  • Mose S, Class R, Weber HW, Rahn A, Brady LW, Bottcher HD (2003) Radiation enhancement by gemcitabine-mediated cell cycle modulations. Am J Clin Oncol 26:60–69

    Article  Google Scholar 

  • Mose S, Karapetian M, Juling-Pohlit L, Taborski B, Ramm U, Damrau M, Rahn A, Bottcher HD (1999) The intensification of the radiotherapeutic effect on HeLa cells by gemcitabine. Strahlenther Onkol 175:78–83

    Article  Google Scholar 

  • Niero A, Emiliani E, Monti G, Pironi F, Turci L, Valenti AM, Marangolo M (1999) Paclitaxel and radiotherapy: sequence-dependent efficacy-a preclinical model. Clin Cancer Res 5:2213–2222

    Google Scholar 

  • Ozols RF, Masuda H, Hamilton TC (1988) Mechanisms of cross-resistance between radiation and antineoplastic drugs. NCI Monogr 6:159–165

  • Pauwels B, Korst AE, De Pooter CM, Lambrechts HA, Pattyn GG, Lardon F, Vermorken JB (2003a) The radiosensitising effect of gemcitabine and the influence of the rescue agent amifostine in vitro. Eur J Cancer 39:838–846

    Article  Google Scholar 

  • Pauwels B, Korst AE, Pattyn GG, Lambrechts HA, Kamphuis JA, De Pooter CM, Peters GJ, Lardon F, Vermorken JB (2006) The relation between deoxycytidine kinase activity and the radiosensitising effect of gemcitabine in eight different human tumour cell lines. BMC Cancer 6:142

    Article  Google Scholar 

  • Pauwels B, Korst AE, Pattyn GG, Lambrechts HA, Van Bockstaele DR, Vermeulen K, Lenjou M, De Pooter CM, Vermorken JB, Lardon F (2003b) Cell cycle effect of gemcitabine and its role in the radiosensitizing mechanism in vitro. Int J Radiat Oncol Biol Phys 57:1075–1083

    Article  Google Scholar 

  • Plastaras JP, Kim SH, Liu YY, Dicker DT, Dorsey JF, McDonough J, Cerniglia G, Rajendran RR, Gupta A, Rustgi AK, Diehl JA, Smith CD, Flaherty KT, El-Deiry WS (2007) Cell cycle dependent and schedule-dependent antitumor effects of sorafenib combined with radiation. Cancer Res 67:9443–9454

    Article  Google Scholar 

  • Poppenborg H, Munstermann G, Knupfer MM, Hotfilder M, Hacker-Klom U, Wolff JE (1997) Cisplatin induces radioprotection in human T98G glioma cells. Anticancer Res 17:1131–1134

    Google Scholar 

  • Powathil GG, Adamson DJ, Chaplain MA (2013) Towards predicting the response of a solid tumour to chemotherapy and radiotherapy treatments: clinical insights from a computational model. PLoS Comput Biol 9:e1003120

    Article  Google Scholar 

  • Raitanen M, Rantanen V, Kulmala J, Pulkkinen J, Klemi P, Grenman S, Grenman R (2002) Paclitaxel combined with fractionated radiation in vitro: a study with vulvar squamous cell carcinoma cell lines. Int J Cancer 97:853–857

    Article  Google Scholar 

  • Rave-Frank M, Glomme S, Hertig J, Weiss E, Pradier O, Hess CF, Virsik-Kopp P, Schmidberger H (2002) Combined effect of topotecan and irradiation on the survival and the induction of chromosome aberrations in vitro. Strahlenther Onkol 178:497–503

    Article  Google Scholar 

  • Rodriguez M, Sevin BU, Perras J, Nguyen HN, Pham C, Steren AJ, Koechli OR, Averette HE (1995) Paclitaxel: a radiation sensitizer of human cervical cancer cells. Gynecol Oncol 57:165–169

    Article  Google Scholar 

  • Romero J, Zapata I, Cordoba S, Jimeno JM, Lopez-Martin JA, Tercero JC, De La Torre A, Vargas JA, Moleron R, Sanchez-Prieto R (2008) In vitro radiosensitisation by trabectedin in human cancer cell lines. Eur J Cancer 44:1726–1733

    Article  Google Scholar 

  • Sakurai T, Hara M, Kawamata R, Kozai Y, Innami H (2012) A basic in vitro study on effective conservative combined therapy for malignant tumors. Oral Radiol 28:48–54

    Article  Google Scholar 

  • Saunders P, Cisterne A, Weiss J, Bradstock KF, Bendall LJ (2011) The mammalian target of rapamycin inhibitor RAD001 (everolimus) synergizes with chemotherapeutic agents, ionizing radiation and proteasome inhibitors in pre-B acute lymphocytic leukemia. Haematologica 96:69–77

    Article  Google Scholar 

  • Sharova NP (2005) How does a cell repair damaged DNA? Biochemistry (Mosc) 70:275–291

    Article  Google Scholar 

  • Sherer E, Hannemann RE, Rundell A, Ramkrishna D (2006) Analysis of resonance chemotherapy in leukemia treatment via multi-staged population balance models. J Theor Biol 240:648–661

    Article  MathSciNet  Google Scholar 

  • Shewach DS, Lawrence TS (1996) Radiosensitization of human solid tumor cell lines with gemcitabine. Semin Oncol 23:65–71

    Google Scholar 

  • Song CW, Lee H, Dings RP, Williams B, Powers J, Santos TD, Choi BH, Park HJ (2012) Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Sci Rep 2:362

    Article  Google Scholar 

  • Steel GG, Peckham MJ (1979) Exploitable mechanisms in combined radiotherapy-chemotherapy—concept of additivity. Int J Radiat Oncol Biol Phys 5:85–91

    Article  Google Scholar 

  • Steren A, Sevin BU, Perras J, Angioli R, Nguyen H, Guerra L, Koechli O, Averette HE (1993) Taxol sensitizes human ovarian cancer cells to radiation. Gynecol Oncol 48:252–258

    Article  Google Scholar 

  • Storozhuk Y, Hopmans SN, Sanli T, Barron C, Tsiani E, Cutz JC, Pond G, Wright J, Singh G, Tsakiridis T (2013) Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br J Cancer 108:2021–2032

    Article  Google Scholar 

  • Stromberg JS, Lee YJ, Armour EP, Martinez AA, Corry PM (1995) Lack of radiosensitization after paclitaxel treatment of three human carcinoma cell lines. Cancer 75:2262–2268

    Article  Google Scholar 

  • Sui M, Fan W (2005) Combination of gamma-radiation antagonizes the cytotoxic effects of vincristine and vinblastine on both mitotic arrest and apoptosis. Int J Radiat Oncol Biol Phys 61:1151–1158

    Article  Google Scholar 

  • Syracuse KC, Greco WR (1986) Comparison between the method of Chou and Talalay and a new method for the assessment of the combined effects of drugs: a Monte-Carlo simulation study. In: Proceedings of the Biopharmaceutical Section of the American Statistical Association, pp 127–132

  • Tabuchi S, Ozawa S, Koyanagi K, Shigematsu N, Kubo A, Ueda M, Kitagawa Y, Kitajima M (2011) Radiation-sensitizing effect of low-concentration docetaxel on human esophageal squamous cell carcinoma cell lines. Exp Ther Med 2:601–606

    Article  Google Scholar 

  • Tallarida RJ (2006) An overview of drug combination analysis with isobolograms. J Pharmacol Exp Ther 319:1–7

    Article  Google Scholar 

  • Tian J, Stone K, Wallin T (2009) A simplified mathematical model of solid tumor regrowth with therapies. Discrete Contin Dyna Syst Suppl 771–779

  • Torgersen EN (1991) Comparison of statistical experiments. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Torres K, Horwitz SB (1998) Mechanisms of taxol-induced cell death are concentration dependent. Cancer Res 58:3620–3626

    Google Scholar 

  • Tuttle S, Hertan L, Daurio N, Porter S, Kaushick C, Li D, Myamoto S, Lin A, O’Malley BW, Koumenis C (2012) The chemopreventive and clinically used agent curcumin sensitizes HPV (-) but not HPV (+) HNSCC to ionizing radiation, in vitro and in a mouse orthotopic model. Cancer Biol Ther 13:575–584

    Article  Google Scholar 

  • Wang J, Yu M, Xiao L, Xu S, Yi Q, Jin W (2013) Radiosensitizing effect of oleanolic acid on tumor cells through the inhibition of GSH synthesis in vitro. Oncol Rep 30:917–924

    Article  Google Scholar 

  • Webb JL (1963) Enzyme and metabolic inhibitors, Vol. 1. Academic Press, New York, NY

  • White DB, Slocum HK, Brun Y, Wrzosek C, Greco WR (2003) A new nonlinear mixture response surface paradigm for the study of synergism: a three drug example. Curr Drug Metab 4:399–409

    Article  Google Scholar 

  • Wild AT, Gandhi N, Chettiar ST, Aziz K, Gajula RP, Williams RD, Kumar R, Taparra K, Zeng J, Cades JA, Velarde E, Menon S, Geschwind JF, Cosgrove D, Pawlik TM, Maitra A, Wong J, Hales RK, Torbenson MS, Herman JM, Tran PT (2013) Concurrent versus sequential sorafenib therapy in combination with radiation for hepatocellular carcinoma. PLoS ONE 8:e65726

    Article  Google Scholar 

  • Williams KS (2016) Anti-cancer treatment and the cell cycle: cellular-level mathematical models. Ph.D. Dissertation. University of Arizona, Tucson

  • Wouters A, Pauwels B, Lardon F, Pattyn GG, Lambrechts HA, Baay M, Meijnders P, Vermorken JB (2010) In vitro study on the schedule-dependency of the interaction between pemetrexed, gemcitabine and irradiation in non-small cell lung cancer and head and neck cancer cells. BMC Cancer 10:441

    Article  Google Scholar 

  • Wu X, Wanders A, Wardega P, Tinge B, Gedda L, Bergstrom S, Sooman L, Gullbo J, Bergqvist M, Hesselius P, Lennartsson J, Ekman S (2009) Hsp90 is expressed and represents a therapeutic target in human oesophageal cancer using the inhibitor 17-allylamino-17-demethoxygeldanamycin. Br J Cancer 100:334–343

    Article  Google Scholar 

  • Yashar CM, Spanos WJ, Taylor DD, Gercel-Taylor C (2005) Potentiation of the radiation effect with genistein in cervical cancer cells. Gynecol Oncol 99:199–205

    Article  Google Scholar 

  • Zhang HH, Yuan TZ, Li J, Liang Y, Huang LJ, Ye JC, Zheng RH, Xie GF, Zhang XP (2013) Erlotinib: An enhancer of radiation therapy in nasopharyngeal carcinoma. Exp Ther Med 6:1062–1066

    Article  Google Scholar 

  • Zhang J, Melhem M, Kassing W, Kelly B, Wang Y, Krishnamoorthy M, Heffelfinger S, Desai P, Roy-Chaudhury P (2007) In vitro paclitaxel and radiation effects on the cell types responsible for vascular stenosis: a preliminary analysis. Blood Purif 25:155–160

    Article  Google Scholar 

  • Zoli W, Ricotti L, Lenzi L, Roncuzzi L, Zini N, Amadori D, Gruppioni R, Sensi A, Gasperi-Campani A (1998) Molecular genetics and in vitro sensitivity of a new human cell line, KKP, from a gastric adenocarcinoma. Cancer Genet Cytogenet 105:43–49

    Article  Google Scholar 

  • Zoli W, Ricotti L, Tesei A, Barzanti F, Amadori D (2001) In vitro preclinical models for a rational design of chemotherapy combinations in human tumors. Crit Rev Oncol Hematol 37:69–82

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant T32 GM084905.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardith W. El-Kareh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 84 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, K.S., Secomb, T.W. & El-Kareh, A.W. Additive Damage Models for Cellular Pharmacodynamics of Radiation–Chemotherapy Combinations. Bull Math Biol 80, 1236–1258 (2018). https://doi.org/10.1007/s11538-017-0316-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0316-z

Keywords

Navigation