Forecasting Epidemics Through Nonparametric Estimation of Time-Dependent Transmission Rates Using the SEIR Model

  • Alexandra Smirnova
  • Linda deCamp
  • Gerardo Chowell
Special Issue: Mathematical Epidemiology
  • 117 Downloads

Abstract

Deterministic and stochastic methods relying on early case incidence data for forecasting epidemic outbreaks have received increasing attention during the last few years. In mathematical terms, epidemic forecasting is an ill-posed problem due to instability of parameter identification and limited available data. While previous studies have largely estimated the time-dependent transmission rate by assuming specific functional forms (e.g., exponential decay) that depend on a few parameters, here we introduce a novel approach for the reconstruction of nonparametric time-dependent transmission rates by projecting onto a finite subspace spanned by Legendre polynomials. This approach enables us to effectively forecast future incidence cases, the clear advantage over recovering the transmission rate at finitely many grid points within the interval where the data are currently available. In our approach, we compare three regularization algorithms: variational (Tikhonov’s) regularization, truncated singular value decomposition (TSVD), and modified TSVD in order to determine the stabilizing strategy that is most effective in terms of reliability of forecasting from limited data. We illustrate our methodology using simulated data as well as case incidence data for various epidemics including the 1918 influenza pandemic in San Francisco and the 2014–2015 Ebola epidemic in West Africa.

Keywords

Parameter estimation Regularization Volterra equation 

References

  1. Bakushinsky AB, Smirnova AB, Liu H (2015) A nonstandard approximation of pseudoinverse and a new stopping criterion for iterative regularization. Inverse Ill Posed Probl 23(3):195–210MathSciNetMATHGoogle Scholar
  2. Biggerstaff M, Alper D, Dredze M, Fox S, Fung IC, Hickmann KS, Lewis B, Rosenfeld R, Shaman J, Tsou MH et al (2016) Results from the centers for disease control and prevention’s predict the 2013–2014 Influenza Season Challenge. BMC Infect Dis 16:357CrossRefGoogle Scholar
  3. Bjørnstad ON, Finkenstädt BF, Grenfell BT (2002) Dynamics of measles epidemics: estimating scaling of transmission rates using a time series sir model. Ecol Monogr 72(2):169–184CrossRefGoogle Scholar
  4. Camacho A, Kucharski A, Aki-Sawyerr Y, White MA, Flasche S, Baguelin M, Pollington T, Carney JR, Glover R, Smout E, Tiffany A, Edmunds WJ, Funk S (2015) Temporal changes in Ebola Transmission in Sierra Leone and implications for control requirements: a real-time modelling Study. PLoS Curr. doi:10.1371/currents.outbreaks.406ae55e83ec0b5193e30856b9235ed2
  5. Capistrán MA, Moreles MA, Lara B (2009) Parameter estimation of some epidemic models. The case of recurrent epidemics caused by respiratory syncytial virus. Bull Math Biol 71(8):1890–1901MathSciNetCrossRefMATHGoogle Scholar
  6. Cauchemez S, Valleron A-J, Boelle P-Y, Flahault A, Ferguson NM (2008) Estimating the impact of schoolclosure on influenza transmission from sentinel data. Nature 452(7188):750–754CrossRefGoogle Scholar
  7. Chowell G, Hengartner NW, Castillo-Chavez C, Fenimore PW, Hyman JM (2004) The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda. J Theor Biol 229(1):119–126MathSciNetCrossRefGoogle Scholar
  8. Chowell G, Nishiura H, Bettencourt LM (2007) Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. J R Soc Interface R Soc 4(12):155–166CrossRefGoogle Scholar
  9. Chowell G, Sattenspiel L, Bansal S, Viboud C (2016) Mathematical models to characterize early epidemic growth: a review. Phys Life Rev 18:66–97CrossRefGoogle Scholar
  10. Chowell G, Viboud C, Hyman JM, Simonsen L (2015) The Western Africa ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates. PLoS Curr. doi:10.1371/currents.outbreaks.8b55f4bad99ac5c5db3663e916803261
  11. Chowell G, Viboud C, Simonsen L, Moghadas S (2016) Characterizing the reproduction number of epidemics with early sub-exponential growth dynamics. ArXiv preprint arXiv:1603.01216
  12. Chretien JP, Riley S, George DB (2015) Mathematical modeling of the West Africa Ebola epidemic. eLife 4:e09186Google Scholar
  13. Colgate SA, Stanley EA, Hyman JM, Layne SP, Qualls C (1989) Risk behavior-based model of the cubic growth of acquired immunodeficiency syndrome in the United States. Proc Nat Acad Sci USA 86(12):4793–4797CrossRefGoogle Scholar
  14. Dureau J, Kalogeropoulos K, Baguelin M (2013) Capturing the time-varying drivers of an epidemic using stochastic dynamical systems. Biostatistics 14(3):541–555CrossRefGoogle Scholar
  15. Engl H, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer Academic, DordechtCrossRefMATHGoogle Scholar
  16. Finkenstädt BF, Grenfell BT (2000) Time series modelling of childhood diseases: a dynamical systems approach. J R Stat Soc Ser C (Appl Stat) 49(2):187–205MathSciNetCrossRefMATHGoogle Scholar
  17. Hadeler KP (2011) Parameter identification in epidemic models. Math Biosci 229(2):185–189MathSciNetCrossRefMATHGoogle Scholar
  18. Kiskowski MA (2014) A three-scale network model for the early growth dynamics of 2014 West Africa Ebola epidemic. PLOS Curr. doi:10.1371/currents.outbreaks.c6efe8274dc55274f05cbcb62bbe6070
  19. Lange A (2016) Reconstruction of disease transmission rates: applications to measles, dengue, and influenza. J Theor Biol 400:138–153MathSciNetCrossRefMATHGoogle Scholar
  20. Lekone PE, Finkenstädt BF (2006) Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study. Biometrics 62(4):1170–1177MathSciNetCrossRefMATHGoogle Scholar
  21. Lewnard JA, Ndeffo Mbah ML, Alfaro-Murillo JA, Altice FL, Bawo L, Nyenswah TG, Galvani AP (2014) Dynamics and control of Ebola virus transmission in Montserrado, Liberia: a mathematical modelling analysis. Lancet Infect Dis 14(12):1189–1195CrossRefGoogle Scholar
  22. Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S, James L, Gopalakrishna G, Chew SK, Tan CC, Samore MH et al (2003) Transmission dynamics and control of severe acute respiratory syndrome. Science 300(5627):1966–1970CrossRefGoogle Scholar
  23. Meltzer MI, Santibanez S, Fischer LS, Merlin TL, Adhikari BB, Atkins CY, Campbell C, Fung IC, Gambhir M, Gift T et al (2016) Modeling in real time during the Ebola response. MMWR Suppl 65(3):85–89CrossRefGoogle Scholar
  24. Merler S, Ajelli M, Fumanelli L, Gomes MF, Piontti AP, Rossi L, Chao DL, Longini IM Jr, Halloran ME, Vespignani A (2015) Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. Lancet Infect Dis 15(2):204–211CrossRefGoogle Scholar
  25. Morozov VA (1984) Methods for solving incorrectly posed problems. Springer, BerlinCrossRefGoogle Scholar
  26. Newman MEJ (2002) Spread of epidemic disease on networks. Phys Rev E 66(1):016128MathSciNetCrossRefGoogle Scholar
  27. Pollicott M, Wang H, Weiss H (2012) Extracting the time-dependent transmission rate from infection data via solution of an inverse ODE problem. J Biol Dyn 6(2):509–523MathSciNetCrossRefGoogle Scholar
  28. Ponciano JM, Capistrán MA (2011) First principles modeling of nonlinear incidence rates in seasonal epidemics. PLoS Comput Biol 7(2):e1001079MathSciNetCrossRefGoogle Scholar
  29. Rivers CM, Lofgren ET, Marathe M, Eubank S, Lewis BL (2014) Modeling the impact of interventions on an epidemic of Ebola in Sierra Leone and Liberia. ArXiv preprint arXiv:1409.4607
  30. Szendroi B, Csnyi G (2004) Polynomial epidemics and clustering in contact networks. Proc R Soc Lond B Biol Sci 271(Suppl 5):S364–S366CrossRefGoogle Scholar
  31. Szusz EK, Garrison LP, Bauch CT (2010) A review of data needed to parameterize a dynamic model of measles in developing countries. BMC Res Notes 3(1):1CrossRefGoogle Scholar
  32. Taylor BP, Dushoff J, Weitz JS (2016) Stochasticity and the limits to confidence when estimating r_0 of Ebola and other emerging infectious diseases. ArXiv preprint arXiv:1601.06829
  33. Viboud C, Simonsen L, Chowell G (2016) A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics 15:27–37CrossRefGoogle Scholar
  34. World Health Organization, Statement on the 1st meeting of the IHR Emergency Committee on the 2014 Ebola outbreak in West Africa, retrieved 6/10/15. http://www.who.int/mediacentre/news/statements/2014/ebola-20140808/en/
  35. World Health Organization, Ebola Situation Report—30 March 2016, retrieved 6/01/16. http://apps.who.int/ebola/current-situation/ebola-situation-report-30-march-2016
  36. Xia Y, Bjørnstad ON, Grenfell BT (2004) Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics. Am Nat 164(2):267–281CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2017

Authors and Affiliations

  • Alexandra Smirnova
    • 1
  • Linda deCamp
    • 1
  • Gerardo Chowell
    • 2
  1. 1.Department of Mathematics and StatisticsGeorgia State UniversityAtlantaUSA
  2. 2.School of Public HealthGeorgia State UniversityAtlantaUSA

Personalised recommendations