Skip to main content

Advertisement

Log in

A Mathematical Model of Forager Loss in Honeybee Colonies Infested with Varroa destructor and the Acute Bee Paralysis Virus

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We incorporate a mathematical model of Varroa destructor and the Acute Bee Paralysis Virus with an existing model for a honeybee colony, in which the bee population is divided into hive bees and forager bees based on tasks performed in the colony. The model is a system of five ordinary differential equations with dependent variables: uninfected hive bees, uninfected forager bees, infected hive bees, virus-free mites and virus-carrying mites. The interplay between forager loss and disease infestation is studied. We study the stability of the disease-free equilibrium of the bee-mite-virus model and observe that the disease cannot be fought off in the absence of varroacide treatment. However, the disease-free equilibrium can be stable if the treatment is strong enough and also if the virus-carrying mites become virus-free at a rate faster than the mite birth rate. The critical forager loss due to homing failure, above which the colony fails, is calculated using simulation experiments for disease-free, treated and untreated mite-infested, and treated virus-infested colonies. A virus-infested colony without varroacide treatment fails regardless of the forager mortality rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson D, Trueman J (2000) Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp Appl Acarol 24(3):165–189

    Article  Google Scholar 

  • Antúnez K, DAlessandro B, Corbella E, Zunino P (2005) Detection of chronic bee paralysis virus and acute bee paralysis virus in Uruguayan honeybees. J Invertebr Pathol 90(1):69–72

    Article  Google Scholar 

  • Ball B, Allen M (1988) The prevalence of pathogens in honey bee (Apis mellifera) colonies infested with the parasitic mite Varroa jacobsoni. Ann Appl Biol 113(2):237–244

    Article  Google Scholar 

  • Barron AB (2015) Death of the bee hive: understanding the failure of an insect society. Curr Opin Insect Sci 10:45–50

    Article  Google Scholar 

  • Becher MA, Osborne JL, Thorbek P, Kennedy PJ, Grimm V (2013) Review: towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models. J Appl Ecol 50(4):868–880

    Article  Google Scholar 

  • Betti MI, Wahl LM, Zamir M (2014) Effects of infection on honey bee population dynamics: a model. PLoS ONE 9(10):e110237

    Article  Google Scholar 

  • Bowen-Walker P, Martin S, Gunn A (1997) Preferential distribution of the parasitic mite, Varroa jacobsoni Oud. on overwintering honeybee (Apis mellifera L.) workers and changes in the level of parasitism. Parasitology 114(02):151–157

    Article  Google Scholar 

  • Brandt A, Gorenflo A, Siede R, Meixner M, Büchler R (2016) The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). J Insect Physiol 86:40–47

    Article  Google Scholar 

  • Canadian Honey Council (2013a). http://www.honeycouncil.ca/industry.php. Accessed 2 July 2013

  • Canadian Honey Council (2013b). http://www.honeycouncil.ca/honey-industry-overview.php. Accessed 2 July 2013

  • Chen YP, Siede R (2007) Honey bee viruses. Adv Virus Res 70:33–80

    Article  Google Scholar 

  • Chen Y, Pettis JS, Collins A, Feldlaufer MF (2006) Prevalence and transmission of honeybee viruses. Appl Environ Microbiol 72(1):606–611

    Article  Google Scholar 

  • de Miranda JR, Cordoni G, Budge G (2010) The acute bee paralysis virus–Kashmir bee virus–Israeli acute paralysis virus complex. J Invertebr Pathol 103:S30–S47

    Article  Google Scholar 

  • Eberl HJ, Frederick MR, Kevan PG (2010) Importance of brood maintenance terms in simple models of the honeybee–Varroa destructor–acute bee paralysis virus complex. Electron J Differ Equ 19:85–98

    MathSciNet  MATH  Google Scholar 

  • Eberl HJ, Kevan PG, Ratti V (2014) Infectious disease modeling for honey bee colonies. In silico bees CRC Press, Boca Raton, pp 87–134

    Google Scholar 

  • Genersch E, Aubert M (2010) Emerging and re-emerging viruses of the honey bee (Apis mellifera L.). Vet Res 41(6):54

    Article  Google Scholar 

  • Hayes J Jr, Underwood RM, Pettis J et al (2008) A survey of honey bee colony losses in the US, fall 2007 to spring 2008. PLoS ONE 3(12):e4071

    Article  Google Scholar 

  • Henry M, Beguin M, Requier F, Rollin O, Odoux JF, Aupinel P et al (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336(6079):348–350

    Article  Google Scholar 

  • Kang Y, Blanco K, Davis T, Wang Y, DeGrandi-Hoffman G (2016) Disease dynamics of honeybees with Varroa destructor as parasite and virus vector. Math Biosci 275:71–92

    Article  MathSciNet  MATH  Google Scholar 

  • Kevan PG, Guzman E, Skinner A, Van Englesdorp D (2007) Colony collapse disorder in Canada: do we have a problem?

  • Kevan PG, Hannan M, Ostiguy N, Guzman E (2006) A summary of the Varroa-virus disease complex in honey bees. American Bee Journal 146:694–697

    Google Scholar 

  • Khoury DS, Barron AB, Myerscough MR (2013) Modelling food and population dynamics in honey bee colonies. PLoS ONE 8(5):e59084

    Article  Google Scholar 

  • Khoury DS, Myerscough MR, Barron AB (2011) A quantitative model of honey bee colony population dynamics. PLoS ONE 6(4):e18491

    Article  Google Scholar 

  • Kribs-Zaleta CM, Mitchell C (2014) Modeling colony collapse disorder in honeybees as a contagion. Math Biosci Eng MBE 11(6):1275–1294

    Article  MathSciNet  MATH  Google Scholar 

  • Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 7(1):e29268

    Article  Google Scholar 

  • Le Conte Y, Ellis M, Ritter W (2010) Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie 41(3):353–363

    Article  Google Scholar 

  • Li Z, Chen Y, Zhang S, Chen S, Li W, Yan L et al (2013) Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L. PLoS ONE 8(10):e77354

    Article  Google Scholar 

  • Martin S (1998) A population model for the ectoparasitic mite Varroa jacobsoni in honey bee (Apis mellifera) colonies. Ecol Model 109(3):267–281

    Article  Google Scholar 

  • Martin SJ (2001a) The role of Varroa and viral pathogens in the collapse of honeybee colonies: a modelling approach. J Appl Ecol 38(5):1082–1093

    Article  Google Scholar 

  • Martin SJ (2001b) Varroa destructor reproduction during the winter in Apis mellifera colonies in UK. Exp Appl Acarol 25(4):321–325

    Article  Google Scholar 

  • McMenamin AJ, Genersch E (2015) Honey bee colony losses and associated viruses. Curr Opin Insect Sci 8:121–129

    Article  Google Scholar 

  • Moore PA, Wilson ME, Skinner JA (2015) Honey bee viruses, The Deadly Varroa Mite Associates. Bee Health 19:2015

    Google Scholar 

  • Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, Pettis JS et al (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS ONE 5(3):e9754

    Article  Google Scholar 

  • Ostiguy N (2004) Honey bee viruses: transmission routes and interactions with Varroa mites. 11 Congreso Internacional De Actualizacion Apicola, 9 al 11De Junio De 2004. Memorias

  • Perry CJ, Søvik E, Myerscough MR, Barron AB (2015) Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proc Nat Acad Sci 112(11):3427–3432

    Article  Google Scholar 

  • Petric A, Guzman-Novoa E, Eberl HJ (2016) A mathematical model for the interplay of Nosema infection and forager losses in honey bee colonies. J Biol Dyn. doi:10.1080/17513758.2016.1237682

    Google Scholar 

  • Potts SG, Roberts SP, Dean R, Marris G, Brown MA, Jones R et al (2010) Declines of managed honey bees and beekeepers in Europe. J Apic Res 49(1):15–22

    Article  Google Scholar 

  • Ratti V, Kevan PG, Eberl HJ (2012) A mathematical model for population dynamics in honeybee colonies infested with Varroa destructor and the acute bee paralysis virus. Can Appl Math Q 21(1):63–93

    MathSciNet  MATH  Google Scholar 

  • Ratti V, Kevan PG, Eberl HJ (2015) A mathematical model of the honeybee–Varroa destructor–acute bee paralysis virus system with seasonal effects. Bull Math Biol 77(8):1493–1520

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson GE (1992) Regulation of division of labor in insect societies. Annu Rev Entomol 37(1):637–665

    Article  Google Scholar 

  • Rortais A, Arnold G, Halm MP, Touffet-Briens F (2005) Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie 36(1):71–83

    Article  Google Scholar 

  • Russell S, Barron AB, Harris D (2013) Dynamic modelling of honey bee (Apis mellifera) colony growth and failure. Ecol Model 265:158–169

    Article  Google Scholar 

  • Sánchez-Bayo F, Goulson D, Pennacchio F, Nazzi F, Goka K, Desneux N (2016) Are bee diseases linked to pesticides? A brief review. Environ Int 89:7–11

    Article  Google Scholar 

  • Seeley TD (1982) Adaptive significance of the age polyethism schedule in honeybee colonies. Behav Ecol Sociobiol 11(4):287–293

    Article  Google Scholar 

  • Seeley TD (2009) The wisdom of the hive: the social physiology of honey bee colonies. Harvard University Press, Massachusetts

    Google Scholar 

  • Stankus T (2008) A review and bibliography of the literature of honey bee colony collapse disorder: a poorly understood epidemic that clearly threatens the successful pollination of billions of dollars of crops in America. J Agric Food Inf 9(2):115–143

    Article  Google Scholar 

  • Staveley JP, Law SA, Fairbrother A, Menzie CA (2014) A causal analysis of observed declines in managed honey bees (Apis mellifera). Hum Ecol Risk Assess Int J 20(2):566–591

    Article  Google Scholar 

  • Sumpter DJ, Martin SJ (2004) The dynamics of virus epidemics in Varroa-infested honey bee colonies. J Anim Ecol 73(1):51–63

    Article  Google Scholar 

  • Wolf S, McMahon DP, Lim KS, Pull CD, Clark SJ, Paxton RJ et al (2014) So near and yet so far: harmonic radar reveals reduced homing ability of Nosema infected honeybees. PLoS ONE 9(8):e103989

    Article  Google Scholar 

  • ZKBS (2012) Zentralkommittee für biologiche Sicherheit des Bundesamts für Verbraucherschutz und Lebensmittelsicherheit Empfehlung Az.: 45242.0087–45242.0094, 2012, (in German: Central Committee for Biological Safety of the Federal Agency for Consumer Protection and Food Safety, Recommendation 45242.0087–45242.0094, 2012). http://www.bvl.bund.de/SharedDocs/Downloads/06_Gentechnik/ZKBS/01_Allgemeine_Stellungnahmen_deutsch/09_Viren/bienenpathogenen_Viren.pdf?__blob=publicationFile&v=2. Accessed 7 May 2012

Download references

Acknowledgements

This work was supported in parts by the Natural Science and Engineering Research Council of Canada (NSERC) with an NSERC Engage Grant (EGP 490903-15), and by the Ontario Ministry for Agriculture, Food and Rural Affairs (OMAFRA) with a New Directions Grant (SR9279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vardayani Ratti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratti, V., Kevan, P.G. & Eberl, H.J. A Mathematical Model of Forager Loss in Honeybee Colonies Infested with Varroa destructor and the Acute Bee Paralysis Virus. Bull Math Biol 79, 1218–1253 (2017). https://doi.org/10.1007/s11538-017-0281-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0281-6

Keywords

Navigation