Skip to main content

Neutral Genetic Patterns for Expanding Populations with Nonoverlapping Generations


We investigate the inside dynamics of solutions to integrodifference equations to understand the genetic consequences of a population with nonoverlapping generations undergoing range expansion. To obtain the inside dynamics, we decompose the solution into neutral genetic components. The inside dynamics are given by the spatiotemporal evolution of the neutral genetic components. We consider thin-tailed dispersal kernels and a variety of per capita growth rate functions to classify the traveling wave solutions as either pushed or pulled fronts. We find that pulled fronts are synonymous with the founder effect in population genetics. Adding overcompensation to the dynamics of these fronts has no impact on genetic diversity in the expanding population. However, growth functions with a strong Allee effect cause the traveling wave solution to be a pushed front preserving the genetic variation in the population. In this case, the contribution of each neutral fraction can be computed by a simple formula dependent on the initial distribution of the neutral fractions, the traveling wave solution, and the asymptotic spreading speed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  • Bonnefon O, Garnier J, Hamel F, Roques L (2013) Inside dynamics of delayed traveling waves. Math Model Nat Phenom 8(3):42–59

    MathSciNet  Article  MATH  Google Scholar 

  • Bonnefon O, Coville J, Garnier J, Roques L (2014) Inside dynamics of solutions of integro-differential equations. Discret Continu Dyn Syst Ser B 19(10):3057–3085

    MathSciNet  Article  MATH  Google Scholar 

  • Bramson M (1983) Convergence of solutions of the Kolmogorov equation to travelling waves, vol 285. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Casella G, Berger RL (2002) Statistical inference, vol 2. Duxbury, Pacific Grove

    MATH  Google Scholar 

  • Dlugosch KM, Parker I (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17(1):431–449

    Article  Google Scholar 

  • Excoffier L (2004) Patterns of dna sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13(4):853–864

    Article  Google Scholar 

  • Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23(7):347–351

    Article  Google Scholar 

  • Garnier J, Giletti T, Hamel F, Roques L (2012) Inside dynamics of pulled and pushed fronts. J Math Pure Appl 98(4):428–449

    MathSciNet  Article  MATH  Google Scholar 

  • Hallatschek O, Nelson DR (2008) Gene surfing in expanding populations. Theor Popul Biol 73(1):158–170

    Article  MATH  Google Scholar 

  • Hallatschek O, Hersen P, Ramanathan S, Nelson DR (2007) Genetic drift at expanding frontiers promotes gene segregation. Proc Natl Acad Sci 104(50):19926–19930

    Article  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58(3):247–276

    Article  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405(6789):907–913

    Article  Google Scholar 

  • Holmes EE, Lewis MA, Banks J, Veit R (1994) Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75(1):17–29

    Article  Google Scholar 

  • Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal. Heredity 77:282–291

    Article  Google Scholar 

  • Kot M (1992) Discrete-time travelling waves: ecological examples. J Math Biol 30(4):413–436

    MathSciNet  Article  MATH  Google Scholar 

  • Krasnosel’skii MA, Zabreiko PP (1984) Geometrical methods of nonlinear analysis. Springer, Berlin

    Book  Google Scholar 

  • Lewis MA, Petrovskii SV, Potts JR (2016) The mathematics behind biological invasions, vol 44. Springer, Berlin

    MATH  Google Scholar 

  • Li B, Lewis MA, Weinberger HF (2009) Existence of traveling waves for integral recursions with nonmonotone growth functions. J Math Biol 58(3):323–338

    MathSciNet  Article  MATH  Google Scholar 

  • Lui R (1983) Existence and stability of travelling wave solutions of a nonlinear integral operator. J Math Biol 16(3):199–220

    MathSciNet  Article  MATH  Google Scholar 

  • Lutscher F (2008) Density-dependent dispersal in integrodifference equations. J Math Biol 56(4):499–524

    MathSciNet  Article  MATH  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species, from the viewpoint of a zoologist. Harvard University Press, Harvard

    Google Scholar 

  • Müller MJ, Neugeboren BI, Nelson DR, Murray AW (2014) Genetic drift opposes mutualism during spatial population expansion. Proc Natl Acad Sci 111(3):1037–1042

    Article  Google Scholar 

  • Ricker WE (1954) Stock and recruitment. J Fish Board Can 11(5):559–623

    Article  Google Scholar 

  • Roques L, Garnier J, Hamel F, Klein EK (2012) Allee effect promotes diversity in traveling waves of colonization. Proc Natl Acad Sci 109(23):8828–8833

    MathSciNet  Article  Google Scholar 

  • Rothe F (1981) Convergence to pushed fronts. Rocky Mt J Math 11(4):617–634

    MathSciNet  Article  MATH  Google Scholar 

  • Slatkin M, Excoffier L (2012) Serial founder effects during range expansion: a spatial analog of genetic drift. Genetics 191(1):171–181

    Article  Google Scholar 

  • Stokes A (1976) On two types of moving front in quasilinear diffusion. Math Biosci 31(3–4):307–315

    MathSciNet  Article  MATH  Google Scholar 

  • Thomas CD, Bodsworth E, Wilson RJ, Simmons A, Davies ZG, Musche M, Conradt L (2001) Ecological and evolutionary processes at expanding range margins. Nature 411(6837):577–581

    Article  Google Scholar 

  • Thompson GG (1993) A proposal for a threshold stock size and maximum fishing mortality rate. Can Spec Publ Fish Aquat Sci 120:303–320

    Google Scholar 

  • Vladimirov VS (1971) Equations of mathematical physics (Uravneniia matematicheskoi fiziki). Marcel Dekker, New York

    Google Scholar 

  • Wang MH, Kot M, Neubert MG (2002) Integrodifference equations, Allee effects, and invasions. J Math Biol 44(2):150–168

    MathSciNet  Article  MATH  Google Scholar 

  • Weinberger H (1982) Long-time behavior of a class of biological models. SIAM J Math Anal 13(3):353–396

    MathSciNet  Article  MATH  Google Scholar 

  • Zemanian AH (1968) Generalized integral transformations, vol 140. Interscience, New York

    MATH  Google Scholar 

Download references


This research was supported by a grant to MAL from the Natural Science and Engineering Research Council of Canada (Grant No. NET GP 434810-12) to the TRIA Network, with contributions from Alberta Agriculture and Forestry, Foothills Research Institute, Manitoba Conservation and Water Stewardship, Natural Resources Canada-Canadian Forest Service, Northwest Territories Environment and Natural Resources, Ontario Ministry of Natural Resources and Forestry, Saskatchewan Ministry of Environment, West Fraser and Weyerhaeuser. MAL is also grateful for support through NSERC and the Canada Research Chair Program. NGM acknowledges support from NSERC TRIA-Net Collaborative Research Grant and would like to express his thanks to the Lewis Research Group for the many discussions and constructive feedback throughout this work.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nathan G. Marculis.



Proof of Lemma 1


For simplicity in notation we focus on a single neutral fraction and drop the superscript i notation. By assumption, \(x^2v_0(x)\mathrm{e}^{sx} \in L^{1}({\mathbb {R}})\cap L^{\infty }({\mathbb {R}})\). Thus, we have

$$\begin{aligned} x^2v_0(x)\mathrm{e}^{sx} \le (1+x^2)v_0(x)\mathrm{e}^{sx} \le C \end{aligned}$$

for all \(x \in {\mathbb {R}}\) where C is a positive constant. Rearranging the previous inequality,

$$\begin{aligned} v_0(x) \le \frac{C\mathrm{e}^{-sx}}{1+x^2} \end{aligned}$$

for all \(x \in {\mathbb {R}}\). Thus, there exists a positive constant C such that the function \(w_0(x)\) defined by

$$\begin{aligned} w_0(x) := \frac{C\mathrm{e}^{-sx}}{1+x^2} \end{aligned}$$

satisfies \(v_0(x) \le w_0(x)\) for all \(x \in {\mathbb {R}}\). It is easy to see that \(w_0(x)\mathrm{e}^{sx}\in L^{1}({\mathbb {R}})\cap L^{\infty }({\mathbb {R}})\). Hence, the Fourier transform of \(w_0(x)\mathrm{e}^{sx} \in L^1({\mathbb {R}})\). To calculate the Fourier Transform of \(w_0(x)\mathrm{e}^{sx}\), note that

$$\begin{aligned} {\mathcal {F}}\left[ \mathrm{e}^{-|x|}\right] (\omega )&=\int _{-\infty }^{\infty }\mathrm{e}^{-|x|}\mathrm{e}^{-i\omega x}\,\mathrm{d}x \end{aligned}$$
$$\begin{aligned}&= \int _{-\infty }^0 \mathrm{e}^{(1-i\omega )x}\,\mathrm{d}x+ \int _{0}^\infty \mathrm{e}^{-(1+i\omega )x}\,\mathrm{d}x \end{aligned}$$
$$\begin{aligned}&= \lim _{b\rightarrow \infty } \left[ \frac{\mathrm{e}^{(1-i\omega )x}}{(1-i\omega )}\bigg |_{-b}^0 - \frac{ \mathrm{e}^{-(1+i\omega )x}}{(1+i\omega )}\bigg |_0^b\right] \end{aligned}$$
$$\begin{aligned}&= \lim _{b\rightarrow \infty } \left[ \frac{1}{(1-i\omega )}-\frac{\mathrm{e}^{-(1-i\omega )b}}{(1-i\omega )} - \frac{ \mathrm{e}^{-(1+i\omega )b}}{(1+i\omega )}+\frac{1}{(1+i\omega )}\right] \end{aligned}$$
$$\begin{aligned}&=\left[ \frac{1}{(1-i\omega )} +\frac{1}{(1+i\omega )}\right] \end{aligned}$$
$$\begin{aligned}&= \frac{2}{1+\omega ^2}. \end{aligned}$$

From the inverse Fourier transform,

$$\begin{aligned} \pi \mathrm{e}^{-|x|}&= \frac{\pi }{2\pi } \int _{-\infty }^\infty \frac{2}{1+\omega ^2}\mathrm{e}^{i\omega x}\,\mathrm{d}\omega \end{aligned}$$
$$\begin{aligned}&= \int _{-\infty }^\infty \frac{1}{1+\omega ^2}\mathrm{e}^{i\omega x}\,\mathrm{d}\omega . \end{aligned}$$

Using the above result,

$$\begin{aligned} {\mathcal {F}}\left[ \frac{C}{1+x^2}\right] (\omega )&={\mathcal {F}}\left[ \frac{C}{1+(-x)^2}\right] (\omega ) \end{aligned}$$
$$\begin{aligned}&=C \int _{-\infty }^{\infty }\frac{1}{1+(-x)^2}\mathrm{e}^{-i\omega (-x)}\,\mathrm{d}x \end{aligned}$$
$$\begin{aligned}&=C \int _{-\infty }^{\infty }\frac{1}{1+x^2}\mathrm{e}^{i\omega x}\,\mathrm{d}x \end{aligned}$$
$$\begin{aligned}&= C\pi \mathrm{e}^{-|\omega |}. \end{aligned}$$

The proof of the lemma is complete. \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marculis, N.G., Lui, R. & Lewis, M.A. Neutral Genetic Patterns for Expanding Populations with Nonoverlapping Generations. Bull Math Biol 79, 828–852 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Integrodifference equations
  • Neutral genetic diversity
  • Range expansion
  • Traveling wave
  • Founder effect
  • Allee effect