Bulletin of Mathematical Biology

, Volume 79, Issue 3, pp 594–618 | Cite as

Influence of Nutrient Availability and Quorum Sensing on the Formation of Metabolically Inactive Microcolonies Within Structurally Heterogeneous Bacterial Biofilms: An Individual-Based 3D Cellular Automata Model

  • Lakshmi Machineni
  • Anil Rajapantul
  • Vandana Nandamuri
  • Parag D. Pawar
Original Article

Abstract

The resistance of bacterial biofilms to antibiotic treatment has been attributed to the emergence of structurally heterogeneous microenvironments containing metabolically inactive cell populations. In this study, we use a three-dimensional individual-based cellular automata model to investigate the influence of nutrient availability and quorum sensing on microbial heterogeneity in growing biofilms. Mature biofilms exhibited at least three structurally distinct strata: a high-volume, homogeneous region sandwiched between two compact sections of high heterogeneity. Cell death occurred preferentially in layers in close proximity to the substratum, resulting in increased heterogeneity in this section of the biofilm; the thickness and heterogeneity of this lowermost layer increased with time, ultimately leading to sloughing. The model predicted the formation of metabolically dormant cellular microniches embedded within faster-growing cell clusters. Biofilms utilizing quorum sensing were more heterogeneous compared to their non-quorum sensing counterparts, and resisted sloughing, featuring a cell-devoid layer of EPS atop the substratum upon which the remainder of the biofilm developed. Overall, our study provides a computational framework to analyze metabolic diversity and heterogeneity of biofilm-associated microorganisms and may pave the way toward gaining further insights into the biophysical mechanisms of antibiotic resistance.

Keywords

Biofilms Heterogeneity Metabolic diversity Quorum sensing Autoinducer Extracellular polymeric substances 

Notes

Acknowledgements

This work was supported by the Start-Up Research Grant (No. SB/YS/LS-210/2013), Science and Engineering Research Board, India.

References

  1. Alpkvist E, Picioreanu C, van Loosdrecht M, Heyden A (2006) Three-dimensional biofilm model with individual cells and continuum EPS matrix. Biotechnol Bioeng 94:961–979CrossRefGoogle Scholar
  2. Alpkvist E, Klapper I (2007) A multidimensional multispecies continuum model for heterogeneous biofilm development. Bull Math Biol 69:765–789CrossRefMATHGoogle Scholar
  3. Anguige K, King J, Ward J (2005) Modelling antibiotic- and anti-quorum sensing treatment of a spatially-structured Pseudomonas aeruginosa population. J Math Biol 51:557–594MathSciNetCrossRefMATHGoogle Scholar
  4. Ardré M, Henry H, Douarche C, Plapp M (2015) An individual-based model for biofilm formation at liquid surfaces. Phys Biol 12:066015CrossRefGoogle Scholar
  5. Bassler BL, Wright M, Showalter R, Silverman M (1993) Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol 9:773–786CrossRefGoogle Scholar
  6. Bester E, Wolfaardt G, Joubert L, Garny K, Saftic S (2005) Planktonic-cell yield of a pseudomonad biofilm. Appl Environ Microbiol 71:7792–7798CrossRefGoogle Scholar
  7. Blaser J, Vergères P, Widmer AF, Zimmerli W (1995) In vivo verification of in vitro model of antibiotic treatment of device-related infection. Antimicrob Agents Chemother 39:1134–1139CrossRefGoogle Scholar
  8. Boyd A, Chakrabarty A (1994) Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl Environ Microbiol 60:2355–2359Google Scholar
  9. Castro SL, Nelman-Gonzalez M, Nickerson CA, Ott CM (2011) Induction of attachment-independent biofilm formation and repression of hfq expression by low-fluid-shear culture of Staphylococcus aureus. Appl Environ Microbiol 77:6368–6378CrossRefGoogle Scholar
  10. Chambless JD, Hunt S, Stewart P (2006) A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials. Appl Environ Microbiol 72:2005–2013CrossRefGoogle Scholar
  11. Chambless JD, Stewart P (2007) A three-dimensional computer model analysis of three hypothetical biofilm detachment mechanisms. Biotechnol Bioeng 97:1573–1584Google Scholar
  12. Chang I, Gilbert ES, Eliashberg N, Keasling J (2003) A three-dimensional, stochastic simulation of biofilm growth and transport-related factors that affect structure. Microbiology 149:2859–2871CrossRefGoogle Scholar
  13. Costerton JW, Cheng KJ, Geesey GG, Ladd T, Nickel J, Dasgupta M, Marrie T (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464CrossRefGoogle Scholar
  14. Darouiche RO, Dhir A, Miller A, Landon G, Raad I, Musher D (1994) Vancomycin penetration into biofilm covering infected prostheses and effect on bacteria. Antimicrob Agents Chemother 170:720–723Google Scholar
  15. Davies DG, Parsek MR, Pearson J, Iglewski B, Costerton J, Greenberg E (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298CrossRefGoogle Scholar
  16. De Beer D, Srinivasan R, Stewart PS (1994) Direct measurement of chlorine penetration into biofilms during disinfection. Appl Environ Microbiol 60:4339–4344Google Scholar
  17. Deretic V, Schurr MJ, Boucher JC, Martin DW (1994) Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress and regulation of bacterial virulence by alternative sigma factors. J Bacteriol 176:2773–2780CrossRefGoogle Scholar
  18. Duddu R, Chopp C, Moran B (2009) A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnol Bioeng 103:92–104CrossRefGoogle Scholar
  19. Eberl H, Morgenroth E, Noguera D, Picioreanu C, Rittmann B, van Loosdrecht M, Wanner O (2006) Mathematical modeling of biofilms. IWA Publishing, LondonGoogle Scholar
  20. Emerenini BO, Hense BA, Kuttler C, Eberl H (2015) A mathematical model of quorum sensing induced biofilm detachment. PLoS ONE 10:e0132385CrossRefGoogle Scholar
  21. Fagerlind MG, Webb JS, Barraud N, McDougald D, Jansson A, Nilsson P, Harlén M, Kjelleberg S, Rice S (2012) Dynamic modelling of cell death during biofilm development. J Theor Biol 295:23–36MathSciNetCrossRefGoogle Scholar
  22. Falsetta ML, Klein MI, Colonne P, Scott-Anne K, Gregoire S, Pai C, Gonzalez-Begne M, Watson G, Krysan D, Koo Bowen WH (2014) Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun 82:1968–1981CrossRefGoogle Scholar
  23. Fozard JA, Lees M, King J, Logan B (2012) Inhibition of quorum sensing in a computational biofilm simulation. Biosystems 109:105–114CrossRefGoogle Scholar
  24. Frederick MR, Kuttler C, Hense BA, Eberl HJ (2011) A mathematical model of quorum sensing regulated eps production in biofilm communities. Theor Biol Med Model 8:8CrossRefGoogle Scholar
  25. Fuqua C, Greenberg E (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695CrossRefGoogle Scholar
  26. Gefen O, Gabay C, Mumcuoglu M, Engel G, Balaban N (2008) Single-cell protein induction dynamics reveals a period of vulnerability to antibiotics in persister bacteria. Proc Natl Acad Sci USA 105:6145–6149CrossRefGoogle Scholar
  27. Gefen O, Balaban NQ (2009) The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol Rev 33:704–717CrossRefGoogle Scholar
  28. Grobe KJ, Zahller J, Stewart P (2002) Role of dose concentration in biocide efficacy against Pseudomonas aeruginosa biofilms. J Ind Microbiol Biotechnol 29:10–15CrossRefGoogle Scholar
  29. Guo P, Weinstein A, Weinbaum S (2000) A hydrodynamic mechanosensory hypothesis for brush border microvilli. Am J Physiol Renal Physiol 279:F698–F712Google Scholar
  30. Hall-Stoodley L, Costerton J, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108CrossRefGoogle Scholar
  31. Hunter R, Beveridge T (2005) High-resolution visualization of Pseudomonas aeruginosa pao1 biofilms by freeze-substitution transmission electron microscopy. J Bacteriol 187:7619–7630CrossRefGoogle Scholar
  32. Janissen R, Murillo DM, Niza B, Sahoo P, Nobrega M, Cesar C, Temperini M, Carvalho H, de Souza A, Cotta M (2015) Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation. Sci Rep 5:9856CrossRefGoogle Scholar
  33. Jayaraman A, Wood T (2008) Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu Rev Biomed Eng 10:145–167CrossRefGoogle Scholar
  34. Jefferson KK, Goldmann D, Pier G (2005) Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother 49:2467–2473CrossRefGoogle Scholar
  35. Keren I, Shah D, Spoering A, Kaldalu N, Lewis K (2004a) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186:8172–8180CrossRefGoogle Scholar
  36. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004b) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13–18CrossRefGoogle Scholar
  37. Kim J, Hahn JS, Franklin M, Stewart P, Yoon J (2009) Tolerance of dormant and active cells in Pseudomonas aeruginosa pa01 biofilm to antimicrobial agents. J Antimicrob Chemother 63:129–135CrossRefGoogle Scholar
  38. Klapper I, Dockery J (2002) Finger formation in biofilm layers. SIAM J Appl Math 62:853–869MathSciNetCrossRefMATHGoogle Scholar
  39. Koerber AJ, King JR, Ward J, Williams P, Croft J, Sockett R (2002) A mathematical model of partial-thickness burn-wound infection by Pseudomonas aeruginosa: quorum sensing and the build-up to invasion. Bull Math Biol 64:239–259CrossRefMATHGoogle Scholar
  40. Koutsoudis MD, Tsaltas D, Minogue TD, von Bodman SB (2006) Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc Natl Acad Sci USA 103:5983–5988CrossRefGoogle Scholar
  41. Kreft JU, Booth G, Wimpenny J (1998) Bacsim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144:3275–3287CrossRefGoogle Scholar
  42. Kreft JU, Picioreanu C, Wimpenny J, van Loosdrecht M (2001) Individual-based modelling of biofilms. Microbiology 147:2897–2912CrossRefGoogle Scholar
  43. Kreft J, Wimpenny J (2001) Effect of eps on biofilm structure and function as revealed by an individual-based model of biofilm growth. Water Sci Technol 43:135–141Google Scholar
  44. Kroukamp O, Dumitrache R, Wolfaardt G (2010) Pronounced effect of the nature of the inoculum on biofilm development in flow systems. Appl Environ Microbiol 76:6025–6031CrossRefGoogle Scholar
  45. Kussell E, Kishony R, Balaban N, Leibler S (2005) Bacterial persistence: a model of survival in changing environments. Genetics 169:1807–1814CrossRefGoogle Scholar
  46. Langebrakea JB, Dilanji GE, Hagen SJ, De Leenheer P (2014) Traveling waves in response to a diffusing quorum sensing signal in spatially-extended bacterial colonies. J Theor Biol 363:53–61MathSciNetCrossRefMATHGoogle Scholar
  47. Lawrence JR, Korber DR, Hoyle B, Costerton J, Caldwell D (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567CrossRefGoogle Scholar
  48. Leisner M, Kuhr J-T, Rädler JO, Frey E, Maier B (2009) Kinetics of genetic switching into the state of bacterial competence. Biophys J 96:1178–1188CrossRefGoogle Scholar
  49. Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56CrossRefGoogle Scholar
  50. Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5:e1000354CrossRefGoogle Scholar
  51. Ma R, Liu J, Y-t Jiang, Liu Z, Z-s Tang, D-x Ye, Zeng J, Z-w Huang (2010) Modeling of diffusion transport through oral biofilms with the inverse problem method. Int J Oral Sci 2:190–197CrossRefGoogle Scholar
  52. Matz C, Bergfeld T, Rice S, Kjelleberg S (2004) Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ Microbiol 6:218–226CrossRefGoogle Scholar
  53. McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S (2012) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10:39–50Google Scholar
  54. Mulcahy LR, Burns JL, Lory S, Lewis K (2010) Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 192:6191–6199CrossRefGoogle Scholar
  55. Ng W, Bassler B (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222CrossRefGoogle Scholar
  56. Nystrom T (2001) Not quite dead enough: on bacterial life, culturability, senescence, and death. Arch Microbiol 176:159–164CrossRefGoogle Scholar
  57. Nystrom T (2003) Conditional senescence in bacteria: death of the immortals. Mol Microbiol 48:17–23CrossRefGoogle Scholar
  58. Picioreanu C, Van Loosdrecht M, Heijnen J (1998a) Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol Bioeng 58:101–116CrossRefGoogle Scholar
  59. Picioreanu C, van Loosdrecht M, Heijnen J (1998b) A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotechnol Bioeng 57:718–731CrossRefGoogle Scholar
  60. Picioreanu C, van Loosdrecht M, Heijnen J (2000) Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study. Biotechnol Bioeng 69:504–515CrossRefGoogle Scholar
  61. Picioreanu C, van Loosdrecht M, Heijnen J (2001) Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72:205–218CrossRefGoogle Scholar
  62. Picioreanu C, Kreft J, Loosdrecht MV (2004) Particle-based multidimensional multispecies biofilm model. Appl Environ Microbiol 70:3024–3040CrossRefGoogle Scholar
  63. Pizarro GE, Garcia C, Moreno R, Sepulveda M (2004) Two-dimensional cellular automaton model for mixed-culture biofilm. Water Sci Technol 49:193–198Google Scholar
  64. Postgate J, Hunter J (1962) The survival of starved bacteria. J Gen Microbiol 29:233–263CrossRefGoogle Scholar
  65. Potera C (1999) Forging a link between biofilms and disease. Science 283:1837–1839CrossRefGoogle Scholar
  66. Pu Y et al (2016) Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol Cell 62:284–294CrossRefGoogle Scholar
  67. Queck SY, Jameson-Lee M, Villaruz A, Bach T, Khan B, Sturdevant D, Ricklefs S, Li M, Otto M (2008) Rnaiii-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol Cell 32:150–158CrossRefGoogle Scholar
  68. Quinones B, Dulla G, Lindow S (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant Microbe Interact 18:682–693CrossRefGoogle Scholar
  69. Rayner MG, Zhang Y, Gorry M, Chen Y, Post J, Ehrlich G (1998) Evidence of bacterial metabolic activity in culture-negative otitis media with effusion. JAMA 279:296–299CrossRefGoogle Scholar
  70. Rochex A, Lebeault J (2007) Effects of nutrients on biofilm formation and detachment of a Pseudomonas putida strain isolated from a paper machine. Water Res 41:2885–2892CrossRefGoogle Scholar
  71. Rutherford S, Bassler B (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:a012427CrossRefGoogle Scholar
  72. Stewart P (1993) A model of biofilm detachment. Biotechnol Bioeng 41:111–117CrossRefGoogle Scholar
  73. Stewart PS, Huang B, Hamilton MA, Hunt SM, Werner EM (2004) Hypothesis for the role of nutrient starvation in biofilm detachment. Appl Environ Microbiol 70:7418–7425CrossRefGoogle Scholar
  74. Stewart P, Franklin M (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210CrossRefGoogle Scholar
  75. Stickler DJ, Morris NS, McLean RJC, Fuqua C (1998) Biofilms on indwelling urethral catheters produce quorum-sensing signal molecules in situ and in vitro. Appl Environ Microbiol 64:3486–3490Google Scholar
  76. Stoodley P, Debeer D, Lewandowski Z (1994) Liquid flow in biofilm systems. Appl Environ Microbiol 60:2711–2716Google Scholar
  77. Stoodley P, Sauer K, Davies D, Costerton J (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:435–464CrossRefGoogle Scholar
  78. Stoodley P, Dodds I, Boyle J, Lappin-Scott H (2012) Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol 85:19S–28SCrossRefGoogle Scholar
  79. Tan CH, Koh KS, Xie C, Tay M, Zhou Y, Williams R, Ng W, Rice S, Kjelleberg S (2014) The role of quorum sensing signalling in eps production and the assembly of a sludge community into aerobic granules. ISME J 8:1186–1197CrossRefGoogle Scholar
  80. Tseng BS, Zhang W, Harrison J, Quach T, Song J, Penterman J, Singh P, Chopp D, Packman A, Parsek M (2013) The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ Microbiol 15:2865–2878Google Scholar
  81. von Bodman SB, Majerczak D, Coplin D (1998) Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc Natl Acad Sci USA 95:7687–7692CrossRefGoogle Scholar
  82. Wanner O, Gujer W (1986) A multispecies biofilm model. Biotechnol Bioeng 28:314–328CrossRefGoogle Scholar
  83. Ward KH, Olson ME, Lam K, Costerton J (1992) Mechanism of persistent infection associated with peritoneal implants. J Med Microbiol 36:406–413CrossRefGoogle Scholar
  84. Yang X, Beyenal H, Harkin G, Lewandowski Z (2000) Quantifying biofilm structure using image analysis. J Microbiol Methods 39:109–119CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2017

Authors and Affiliations

  • Lakshmi Machineni
    • 1
  • Anil Rajapantul
    • 1
  • Vandana Nandamuri
    • 1
  • Parag D. Pawar
    • 1
  1. 1.Department of Chemical EngineeringIndian Institute of Technology HyderabadKandi, SangareddyIndia

Personalised recommendations