Bulletin of Mathematical Biology

, Volume 79, Issue 1, pp 36–62 | Cite as

Antimicrobial Stewardship and Environmental Decontamination for the Control of Clostridium difficile Transmission in Healthcare Settings

Original Article

Abstract

We implement an agent-based model for Clostridium difficile transmission in hospitals that accounts for several processes and individual factors including environmental and antibiotic heterogeneity in order to evaluate the efficacy of various control measures aimed at reducing environmental contamination and mitigating the effects of antibiotic use on transmission. In particular, we account for local contamination levels that contribute to the probability of colonization and we account for both the number and type of antibiotic treatments given to patients. Simulations illustrate the relative efficacy of several strategies for the reduction of nosocomial colonizations and nosocomial diseases.

Keywords

Clostridium difficile Control Agent-based model 

References

  1. Bartlett JG (2002) Antibiotic-associated diarrhea. N Engl J Med 346(5):334–339CrossRefGoogle Scholar
  2. Bignardi G (1998) Risk factors for Clostridium difficile infection. J Hosp Infect 40(1):1–15CrossRefGoogle Scholar
  3. Brauer F (2015) Some simple nosocomial disease transmission models. Bull Math Biol 77(3):460–469MathSciNetCrossRefMATHGoogle Scholar
  4. Codella J, Safdar N, Heffernan R, Alagoz O (2015) An agent-based simulation model for Clostridium difficile infection control. Med Decis Mak 35(2):211–229CrossRefGoogle Scholar
  5. Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, McDonald LC, Pepin J, Wilcox MH (2010) Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol 31(5):431–455CrossRefGoogle Scholar
  6. Curry SR, Muto CA, Schlackman JL, Pasculle AW, Shutt KA, Marsh JW, Harrison LH (2013) Use of multilocus variable number of tandem repeats analysis genotyping to determine the role of asymptomatic carriers in Clostridium difficile transmission. Clin Infect Dis 57(8):1094–1102CrossRefGoogle Scholar
  7. D’Agata EM, Magal P, Olivier D, Ruan S, Webb GF (2007) Modeling antibiotic resistance in hospitals: the impact of minimizing treatment duration. J Theor Biol 249(3):487–499MathSciNetCrossRefGoogle Scholar
  8. Dancer S, Kirkpatrick P, Corcoran D, Christison F, Farmer D, Robertson C (2013) Approaching zero: temporal effects of a restrictive antibiotic policy on hospital-acquired Clostridium difficile, extended-spectrum \(\beta \)-lactamase-producing coliforms and meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 41(2):137–142CrossRefGoogle Scholar
  9. Donskey CJ (2010) Preventing transmission of Clostridium difficile: Is the answer blowing in the wind? Clin Infect Dis 50(11):1458–1461CrossRefGoogle Scholar
  10. Dubberke ER, Gerding DN, Classen D, Arias KM, Kelly CP, Deverick MC, Anderson J, Burstin H, Calfee DP, Coffin SE, Fraser V, Griffin FA, Gross P, Kaye KS, Klompas M, Lo E, Marschall J, Mermel LA, Nicolle L, Pegues DA, Perl TM, Saint S, Salgado CD, Weinstein RA, Wise R, Yokoe DS (2008) Strategies to prevent Clostridium difficile infections in acute care hospitals. Infect Control Hosp Epidemiol 29(S1):S81–S92CrossRefGoogle Scholar
  11. Dubberke ER, Carling PM, Carrico R, Donskey CJ, Loo VG, McDonald LC, Maragakis LL, Sandora TJ, Weber DJ, Yokoe DS, Gerding DN (2014) Strategies to prevent Clostridium difficile infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol 35(6):628–645CrossRefGoogle Scholar
  12. Dubberke ER, Olsen MA (2012) Burden of Clostridium difficile on the healthcare system. Clin Infect Dis 55(suppl 2):S88–S92CrossRefGoogle Scholar
  13. Feazel LM, Malhotra A, Perencevich EN, Kaboli P, Diekema DJ, Schweizer ML (2014) Effect of antibiotic stewardship programmes on Clostridium difficile incidence: a systematic review and meta-analysis. J Antimicrob Chemother 69(7):1748–1754CrossRefGoogle Scholar
  14. Gerding DN, Muto CA, Owens RC (2008) Measures to control and prevent Clostridium difficile infection. Clin Infect Dis 46(Supplement 1):S43–S49CrossRefGoogle Scholar
  15. Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF (2010) The ODD protocol: a review and first update. Ecol Model 221(23):2760–2768CrossRefGoogle Scholar
  16. Hsieh Y-H, Liu J, Tzeng Y-H, Wu J (2014) Impact of visitors and hospital staff on nosocomial transmission and spread to community. J Theor Biol 356:20–29MathSciNetCrossRefGoogle Scholar
  17. Hsu J, Abad C, Dinh M, Safdar N (2010) Prevention of endemic healthcare-associated Clostridium difficile infection: reviewing the evidence. Am J Gastroenterol 105(11):2327–2339CrossRefGoogle Scholar
  18. Lanzas C, Dubberke ER, Lu Z, Reske KA, Grohn Y (2011) Epidemiological model for Clostridium difficile transmission in healthcare settings. Infect Control Hosp Epidemiol 32(06):553–561CrossRefGoogle Scholar
  19. Lanzas CP, Dubberke ER (2014) Effectiveness of screening hospital admissions to detect asymptomatic carriers of Clostridium difficile: a modeling evaluation. Infect Control Hosp Epidemiol 35(8):1043–1050CrossRefGoogle Scholar
  20. Leffler DA, Lamont JT (2015) Clostridium difficile infection. N Engl J Med 372(16):1539–1548CrossRefGoogle Scholar
  21. Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, Farley MM, Holzbauer SM, Meek JI, Phipps EC, Wilson LE, Winston LG, Cohen JA, Limbago BM, Fridkin SK, Gerding DN, McDonald LC (2015) Burden of Clostridium difficile infection in the United States. N Engl J Med 372(9):825–834CrossRefGoogle Scholar
  22. McFarland LV (2008) Update on the changing epidemiology of Clostridium difficile-associated disease. Nat Clin Pract Gastroenterol Hepatol 5(1):40–48MathSciNetCrossRefGoogle Scholar
  23. McMaster-Baxter N L, Musher D M (2007) Clostridium difficile: recent epidemiologic findings and advances in therapy. Pharmacother J Hum Pharmacol Drug Therapy 27(7):1029–1039CrossRefGoogle Scholar
  24. Otten AM, Reid-Smith RJ, Fazil A, Weese JS (2010) Disease transmission model for community-associated Clostridium difficile infection. Epidemiol Infect 138:907–914CrossRefGoogle Scholar
  25. Owens RC, Donskey CJ, Gaynes RP, Loo VG, Muto CA (2008) Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis 46:S19–31CrossRefGoogle Scholar
  26. Planche T, Aghaizu A, Holliman R, Riley P, Poloniecki J, Breathnach A, Krishna S (2008) Diagnosis of Clostridium difficile infection by toxin detection kits: a systematic review. Lancet Infect Dis 8(12):777–784CrossRefGoogle Scholar
  27. Rubin MA, Jones M, Leecaster M, Khader K, Ray W, Huttner A, Huttner B, Toth D, Sablay T, Borotkanics RJ, Gerding DN, Samore MH (2013) A simulation-based assessment of strategies to control Clostridium difficile transmission and infection. PLoS One 8(11):e80671CrossRefGoogle Scholar
  28. Rupnik M, Wilcox MH, Gerding DN (2009) Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 7(7):526–536CrossRefGoogle Scholar
  29. Slimings C, Riley TV (2014) Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. J Antimicrob Chemother 69(4):881–891CrossRefGoogle Scholar
  30. Steiner C, Barrett M, Terrel L (2012) HCUP projections:Clostridium difficile hospitalizations 2011 to 2012. HCUP Projections Report # 2012-01Google Scholar
  31. Sullivan A, Edlund C, Nord CE (2001) Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 1(2):101–114CrossRefGoogle Scholar
  32. Talpaert MJ, Gopal Rao G, Cooper BS, Wade P (2011) Impact of guidelines and enhanced antibiotic stewardship on reducing broad-spectrum antibiotic usage and its effect on incidence of Clostridium difficile infection. J Antimicrob Chemother 66(9):2168–2174CrossRefGoogle Scholar
  33. U.S. Department of Health and Human Services (2013) National action plan to prevent health care-associated infections: road map to elimination. Technical reportGoogle Scholar
  34. Webb G, Blaser MJ, Zhu H, Ardal S, Wu J (2004) Critical role of nosocomial transmission in the toronto sars outbreak. Math Biosci Eng 1(1):1–13MathSciNetCrossRefMATHGoogle Scholar
  35. Yahdi M, Abdelmageed S, Lowden J, Tannenbaum L (2012) Vancomycin-resistent enterococci colonization-infection model: parameter impacts and outbreak risks. J Biol Dyn 6(2):645CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2016

Authors and Affiliations

  1. 1.Department of MathematicsHoughton CollegeHoughtonUSA
  2. 2.Department of MathematicsUniversity of TennesseeKnoxvilleUSA
  3. 3.Department of Population Health and PathobiologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations