Skip to main content

Advertisement

Log in

Expansion Under Climate Change: The Genetic Consequences

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction–diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arenas M, Ray N, Currat M, Excoffier L (2012) Consequences of range contractions and range shifts on molecular diversity. Mol Biol Evol 29(1):207–218

    Article  Google Scholar 

  • Balanyá J (2006) Global genetic change tracks global climate warming in drosophila subobscura. Science 313(5794):1773–1775

    Article  Google Scholar 

  • Barton N, Etheridge A, Kelleher J, Véber A (2013) Genetic hitchhiking in spatially extended populations. Theor Popul Biol 87:75–89

    Article  MATH  Google Scholar 

  • Barton NH, Etheridge AM (2011) The relation between reproductive value and genetic contribution. Genetics 188(4):953–973

    Article  Google Scholar 

  • Battisti A, Stastny M, Netherer S, Robinet C, Schopf A, Roques A, Larsson S (2005) Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol Appl 15(6):2084–2096

    Article  Google Scholar 

  • Berestycki H, Rossi L (2008) Reaction-diffusion equations for population dynamics with forced speed I—the case of the whole space. Discrete Contin Dyn Syst 21(1):41–67

    Article  MathSciNet  MATH  Google Scholar 

  • Berestycki H, Diekmann O, Nagelkerke CJ, Zegeling PA (2009) Can a species keep pace with a shifting climate? Bull Math Biol 71(2):399–429

    Article  MathSciNet  MATH  Google Scholar 

  • Berger WH, Parker FL (1970) Diversity of planktonic foraminifera in deep-sea sediments. Science 168:1345–1347

    Article  Google Scholar 

  • Bonnefon O, Coville J, Garnier J, Hamel F, Roques L (2014) The spatio-temporal dynamics of neutral genetic diversity. Ecol Complex 20:282–292

    Article  Google Scholar 

  • Breed G, Stichter S, Crone EE (2013) Climate-driven changes in northeastern US butterfly communities. Nat Clim Change 3:142–145

    Article  Google Scholar 

  • Brown JH, Stevens GC, Kaufman DM (1996) The geographic range: size, shape, boundaries, and internal structure. Annu Rev Ecol Evol Syst 27(1):597–623

    Article  Google Scholar 

  • Burton OJ, Phillips BL, Travis JMJ (2010) Trade-offs and the evolution of life-histories during range expansion. Ecol Lett 13(10):1210–1220

    Article  Google Scholar 

  • Cwynar LC, Mac Donald GM (1987) Geographical variation of lodgepole pine in relation to population history. Am Nat 129:463–469

    Article  Google Scholar 

  • Dai Q, Zhan X, Lu B, Fu J, Wang Q, Qi D (2014) Spatial genetic structure patterns of phenotype-limited and boundary-limited expanding populations: a simulation study. PLoS One 9(1):e85778

    Article  Google Scholar 

  • Durrett R, Wai-Tong F (2016) Genealogies in expanding populations. Ann Appl Probab. arXiv:1507.00918v2

  • Edmonds CA, Lillie AS, Cavalli-Sforza LL (2004) Mutations arising in the wave front of an expanding population. Proc Natl Acad Sci USA 101(4):975–979

    Article  Google Scholar 

  • Estoup A, Beaumont M, Sennedot F, Moritz C, Cornuet JM (2004) Genetic analysis of complex demographic scenarios: spatially expanding populations of the cane toad, bufo marinus. Evolution 58(9):2021–2036

    Article  Google Scholar 

  • Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23(7):347–351

    Article  Google Scholar 

  • Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40(1):481–501

    Article  Google Scholar 

  • Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estradaa YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Garnier J, Giletti T, Hamel F, Roques L (2012) Inside dynamics of pulled and pushed fronts. J Math Pures Appl 11:173–188

    MathSciNet  MATH  Google Scholar 

  • Goodsman D, Cooke B, Coltman DW, Lewis MA (2014) The genetic signature of rapid range expansions: dispersal, growth and invasion speed. Theor Popul Biol 98:1–10

    Article  MATH  Google Scholar 

  • Hallatschek O, Nelson DR (2008) Gene surfing in expanding populations. Theor Popul Biol 73:158–170

    Article  MATH  Google Scholar 

  • Hallatschek O, Hersen P, Ramanathan S, Nelson DR (2007) Genetic drift at expanding frontiers promotes gene segregation. Proc Natl Acad Sci USA 104(50):19,926–19,930

    Article  Google Scholar 

  • Henry RC, Bocedi G, Travis JMJ (2013) Eco-evolutionary dynamics of range shifts: elastic margins and critical thresholds. J Theor Biol 321:1–7

    Article  MathSciNet  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the quarternary ice ages. Nature 405:907–913

    Article  Google Scholar 

  • Hill JK, Thomas CD, Blakeley DS (1999) Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia 121(2):165–170

    Article  Google Scholar 

  • Hill JK, Hughes CL, Dytham C, Searle JB (2006) Genetic diversity in butterflies: interactive effects of habitat fragmentation and climate-driven range expansion. Biol Lett 2(1):152–154

    Article  Google Scholar 

  • Klopfstein S, Currat M, Excoffier L (2006) The fate of mutations surfing on the wave of a range expansion. Mol Biol Evol 23(3):482–490

    Article  Google Scholar 

  • Kubisch A, Hovestadt T, Poethke HJ (2010) On the elasticity of range limits during periods of expansion. Ecology 91(10):3094–3099

    Article  Google Scholar 

  • Leblois R, Estoup A, Streiff R (2006) Genetics of recent habitat contraction and reduction in population size: does isolation by distance matter? Mol Ecol 15(12):3601–3615

    Article  Google Scholar 

  • Leinster T, Cobbold C (2012) Measuring diversity: the importance of species similarity. Ecology 93(3):477–489

    Article  Google Scholar 

  • McInerny GJ, Dytham C, Travis JMJ (2007) Range shifting on fragmented landscapes. Ecol Inform 2:1–8

    Article  Google Scholar 

  • McInerny GJ, Turner JRG, Wong HY, Travis JMJ, Benton TG (2009) How range shifts induced by climate change affect neutral evolution. Proc R Soc B 276(1661):1527–1534

    Article  Google Scholar 

  • Nagylaki T (1975) Conditions for the existence of clines. Genetics 80(3):595–615

    Google Scholar 

  • Nagylaki T (1980a) Geographical invariance and the strong-migration limit in subdivided populations. J Math Biol 41(2):123–142

    Article  MathSciNet  MATH  Google Scholar 

  • Nagylaki T (1980b) The strong-migration limit in geographically structured populations. J Math Biol 9(2):101–114

    Article  MathSciNet  MATH  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29(1):1–10

    Article  Google Scholar 

  • Neve G, Pavlicko A, Konvicka M (2009) Loss of genetic diversity through spontaneous colonization in the bog fritillary butterfly Proclossiana eunomia (Lepidoptera: Nymphalidae) in the Czech Republic. Eur J Entomol 106(1):11–19

    Article  Google Scholar 

  • Nullmeier J, Hallatschek O (2013) The coalescent in boundary-limited range expansions: the coalescent in boundary-limited range expansions. Evolution 67:1307–1320

    Google Scholar 

  • Parmesan C (1996) Climate and species’ range. Nature 382:765–766

    Article  Google Scholar 

  • Parmesan C (2006) Evolutionary and ecological responses to recent climate change. Annu Rev Ecol Evol 37(8):637–669

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12(5):361–371

    Article  Google Scholar 

  • Pease CP, Lande R, Bull JJ (1989) A model of population growth, dispersal and evolution in a changing environment. Ecology 70:1657–1664

    Article  Google Scholar 

  • Perkins TA, Phillips BL, Baskett ML, Hastings A (2013) Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol Lett 16(8):1079–87

    Article  Google Scholar 

  • Peterson AT, Ortega-Huerta MA, Bartley J, Sanchez-Cordero V, Soberon J, Buddemeier RH, Stockwell DRB (2002) Future projections for mexican faunas under global climate change scenarios. Nature 416(6881):626–629

    Article  Google Scholar 

  • Phillips BL (2012) Range shift promotes the formation of stable range edges. J Biogeogr 39(1):153–161

    Article  Google Scholar 

  • Pluess AR (2011) Pursuing glacier retreat: genetic structure of a rapidly expanding larix decidua population. Mol Ecol 20(3):473–485

    Article  Google Scholar 

  • Potapov AB, Lewis MA (2004) Climate and competition: the effect of moving range boundaries on habitat invasibility. Bull Math Biol 66(5):975–1008

    Article  MathSciNet  MATH  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421(6918):57–60

    Article  Google Scholar 

  • Roques L, Garnier J, Hamel F, Klein E (2012) Allee effect promotes diversity in traveling waves of colonization. Proc Natl Acad Sci USA 109:8828–8833

    Article  MathSciNet  Google Scholar 

  • Rousselet J, Zhao R, Argal D, Simonato M, Battisti A, Roques A, Kerdelhué C (2010) The role of topography in structuring the demographic history of the pine processionary moth, Thaumetopoea pityocampa (lepidoptera: Notodontidae). J Biogeogr 37:1478–1490

    Google Scholar 

  • Samarasekera GDN, Bartell NV, Lindgren BS, Cooke JEK, Davis CS, James PMA, Coltman DW, Mock KE, Murray BW (2012) Spatial genetic structure of the mountain pine beetle (Dendroctonus ponderosae) outbreak in western Canada: historical patterns and contemporary dispersal. Mol Ecol 21:2931–2948

    Article  Google Scholar 

  • Schippers P, Verboom J, Vos CC, Jochem R (2011) Metapopulation shift and survival of woodland birds under climate change: will species be able to track? Ecography 34(6):909–919

    Article  Google Scholar 

  • Schwartz MW, Iverson LR, Prasad AM, Matthews SN, O’Connor RJ (2006) Predicting extinctions as a result of climate change. Ecology 87(7):1611–1615

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  MathSciNet  MATH  Google Scholar 

  • Simmons AD, Thomas CD (2004) Changes in dispersal during species’ range expansions. Am Nat 164(3):378–395

    Article  Google Scholar 

  • Simpson EH (1949) Measurment of diversity. Nature 163:688

    Article  MATH  Google Scholar 

  • Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196–218

    Article  MathSciNet  MATH  Google Scholar 

  • Stokes AN (1976) On two types of moving front in quasilinear diffusion. Math Biosci 31:307–315

    Article  MathSciNet  MATH  Google Scholar 

  • Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc B 270:467–473

    Article  Google Scholar 

  • Travis JMJ, Mustin K, Benton TG, Dytham C (2009) Accelerating invasion rates result from the evolution of density-dependent dispersal. J Theor Biol 259(1):151–158

    Article  MathSciNet  Google Scholar 

  • Travis JMJ, Delgado M, Bocedi G, Baguette M, Bartoń K, Bonte D, Boulangeat I, Hodgson JA, Kubisch A, Penteriani V, Saastamoinen M, Stevens VM, Bullock JM (2013) Dispersal and species’ responses to climate change. Oikos 122(11):1532–1540

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee T, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389–395

    Article  Google Scholar 

  • White TA, Perkins SE, Heckel G, Searle JB (2013) Adaptive evolution during an ongoing range expansion: the invasive bank vole (myodes glareolus) in ireland. Mol Ecol 22(11):2971–2985

    Article  Google Scholar 

  • Xin J (2000) Front propagation in heterogeneous media. SIAM Rev 42:161–230

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

MAL gratefully acknowledges a Canada Research Chair, a Killam Research Fellowship, Discovery and Accelerator grants from the Canadian Natural Sciences and Engineering Research Council, and the Natural Science and Engineering Research Council of Canada (Grant No. NET GP 434810-12) to the TRIA Network, with contributions from Alberta Agriculture and Forestry, Foothills Research Institute, Manitoba Conservation and Water Stewardship, Natural Resources Canada - Canadian Forest Service, Northwest Territories Environment and Natural Resources, Ontario Ministry of Natural Resources and Forestry, Saskatchewan Ministry of Environment, West Fraser and Weyerhaeuser. JG gratefully acknowledges the NONLOCAL project from the French National Research Agency (ANR-14-CE25-0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmy Garnier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garnier, J., Lewis, M.A. Expansion Under Climate Change: The Genetic Consequences. Bull Math Biol 78, 2165–2185 (2016). https://doi.org/10.1007/s11538-016-0213-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0213-x

Keywords

Navigation