Advertisement

Bulletin of Mathematical Biology

, Volume 78, Issue 8, pp 1585–1639 | Cite as

Mathematical Modelling of Bacterial Quorum Sensing: A Review

  • Judith Pérez-Velázquez
  • Meltem Gölgeli
  • Rodolfo García-Contreras
Review Article

Abstract

Bacterial quorum sensing (QS) refers to the process of cell-to-cell bacterial communication enabled through the production and sensing of the local concentration of small molecules called autoinducers to regulate the production of gene products (e.g. enzymes or virulence factors). Through autoinducers, bacteria interact with individuals of the same species, other bacterial species, and with their host. Among QS-regulated processes mediated through autoinducers are aggregation, biofilm formation, bioluminescence, and sporulation. Autoinducers are therefore “master” regulators of bacterial lifestyles. For over 10 years, mathematical modelling of QS has sought, in parallel to experimental discoveries, to elucidate the mechanisms regulating this process. In this review, we present the progress in mathematical modelling of QS, highlighting the various theoretical approaches that have been used and discussing some of the insights that have emerged. Modelling of QS has benefited almost from the onset of the involvement of experimentalists, with many of the papers which we review, published in non-mathematical journals. This review therefore attempts to give a broad overview of the topic to the mathematical biology community, as well as the current modelling efforts and future challenges.

Keywords

Bacteria Communication Quorum sensing Antibacterial Autoinducers Mathematical modelling Simulations 

Mathematics Subject Classification

05C38 15A15 05A15 15A18 

Notes

Acknowledgments

RGC was supported by a grant from SEP/CONACyT-Mexico No. 152794. JPV wants to thank Stephen Starck (TUM) for his patience and help revising the document.

References

  1. Almeida AR, Amado IF, Reynolds J, Berges J, Lythe G, Molina-Paris C, Freitas AA (2012) Quorum sensing in CD4\(+\) T cell homoeostasis: a hypothesis and a model. Front. Immunol. 3. doi: 10.3389/fimmu.2012.00125
  2. Anand R, Rai N, Thattai M (2013) Interactions among quorum sensing inhibitors. PLOS One 8:e62254CrossRefGoogle Scholar
  3. Anetzberger C, Pirch T, Jung K (2009) Heterogeneity in quorum sensing-regulated bioluminescence of Vibrio harveyi. Mol Microbiol 73:267–277. doi: 10.1111/j.1365-2958.2009.06768.x CrossRefGoogle Scholar
  4. Anguige K, King JR, Ward JP (2005) Modelling antibiotic- and anti-quorum sensing treatment of a spatially-structured Pseudomonas aeruginosa population. J Math Biol 51(5):557–594. doi: 10.1007/s00285-005-0316-8 MathSciNetzbMATHCrossRefGoogle Scholar
  5. Anguige K, King JR, Ward JP (2006) A multi-phase mathematical model of quorum sensing in a maturing Pseudomonas aeruginosa biofilm. Math Biosci 203:240–276. doi: 10.1016/j.mbs.2006.05.009 MathSciNetzbMATHCrossRefGoogle Scholar
  6. Anguige K, King JR, Ward JP, Williams P (2004) Mathematical modelling of therapies targeted at bacterial quorum sensing. Math Biosci 192(1):39–83. doi: 10.1016/j.mbs.2004.06.008 MathSciNetzbMATHCrossRefGoogle Scholar
  7. Banik SK, Fenley AT, Kulkarni RV (2009) A model for signal transduction during quorum sensing in Vibrio harveyi. Phys Biol 6. doi: 10.1088/1478-3975/6/4/046008
  8. Barbarossa M, Kuttler C, Fekete A, Rothballer M (2010) A delay model for quorum sensing of Pseudomonas putida. Biosystems 102:148–156. doi: 10.1016/j.biosystems.2010.09.001 CrossRefGoogle Scholar
  9. Beckmann BE, Knoester DB, Connelly BD, Waters CM, McKinley PK (2012) Evolution of resistance to quorum quenching in digital organisms. Artif Life 18:291–310. doi: 10.1162/artl_a_00066
  10. Ben-Jacob E, Cohen I, Levine H (2000) Cooperative self-organization of microorganisms. Adv Phys 49:395–554. doi: 10.1080/000187300405228 CrossRefGoogle Scholar
  11. Bischofs IB, Hug JA, Liu AW, Wolf DM, Arkin AP (2009) Complexity in bacterial cell-cell communication: quorum signal integration and subpopulation signaling in the Bacillus subtilis phosphorelay. Proc Natl Acad Sci USA 106:6459–6464. doi: 10.1073/pnas.0810878106 CrossRefGoogle Scholar
  12. Boyer M, Wisniewski-Dyé F (2009) Cell-cell signalling in bacteria: not simply a matter of quorum. FEMS Microbiol Ecol 70:1–9. doi: 10.1111/j.1574-6941.2009.00745.x CrossRefGoogle Scholar
  13. Boedicker J, Vincent M, Ismagilov R (2009) Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angew Chem Int Ed 48:5908–5911. doi: 10.1002/anie.200901550 CrossRefGoogle Scholar
  14. Brookfield J (1998) Quorum sensing and group selection. Evolution 52:1263–1269CrossRefGoogle Scholar
  15. Brown D (2010) A mathematical model of the gac/rsm quorum sensing network in Pseudomonas fluorescens. Biosystems 101:200–212. doi: 10.1016/j.biosystems.2010.07.004 CrossRefGoogle Scholar
  16. Brown D (2013) Linking molecular and population processes in mathematical models of quorum sensing. Bull Math Biol 75:1813–1839. doi: 10.1007/s11538-013-9870-1 MathSciNetzbMATHCrossRefGoogle Scholar
  17. Brown SP (1999) Cooperation and conflict in host-manipulating parasites. Proc R Soc B 266:1899–1899. doi: 10.1098/rspb.1999.0864 CrossRefGoogle Scholar
  18. Brown SP, Johnstone RA (2001) Cooperation in the dark: signalling and collective action in quorum-sensing bacteria. Proc R Soc B 268:961–965. doi: 10.1098/rspb.2001.1609 CrossRefGoogle Scholar
  19. Brown SP, West SA, Diggle SP, Griffin AS (2009) Social evolution in micro-organisms and a trojan horse approach to medical intervention strategies. Philos Trans R Soc B 364:3157–3168. doi: 10.1098/rstb.2009.0055 CrossRefGoogle Scholar
  20. Busby S, de Lorenzo V (2001) Cell regulation: putting together pieces of the big puzzle. Curr Opin Microbiol 4:117–118. doi: 10.1016/S1369-5274(00)00175-2 CrossRefGoogle Scholar
  21. Calfee MW, Coleman JP, Pesci EC (2001) Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 98:11633–11637CrossRefGoogle Scholar
  22. Carnes EC, Lopez DM, Donegan NP, Cheung A, Gresham H, Timmins GS, Brinker (2010) Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nat Chem Biol 6, 41–45. URL: http://www.ncbi.nlm.nih.gov/pubmed/19935660
  23. Castillo-Juarez I, Maeda T, Mandujano-Tinoco EA, Tomas M, Perez-Eretza B, Garcia-Contreras R (2015) Role of quorum sensing in bacterial infections. World J Clin Cases 3:575–598Google Scholar
  24. Chen CC, Riadi L, Suh SJ, Ohman DE, Ju LK (2005) Degradation and synthesis kinetics of quorum-sensing autoinducer in Pseudomonas aeruginosa cultivation. J Biotechnol 117:1–10. doi: 10.1016/j.jbiotec.2005.01.003 CrossRefGoogle Scholar
  25. Chen F, Chen CC, Riadi L, Ju LK (2004) Role of quorum sensing in bacterial infections. Biotechnol Prog 20:1325–1331. doi: 10.1021/bp049928b CrossRefGoogle Scholar
  26. Chen MT, Weiss R (2005) Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana. Nat Biotechnol 23:1551–1555. doi: 10.1038/nbt1162 CrossRefGoogle Scholar
  27. Chopp DL, Kirisits MJ, Moran B, Parsek MR (2002a) The dependence of quorum sensing on the depth of a growing biofilm. Bull Math Biol 65:1053–1079zbMATHCrossRefGoogle Scholar
  28. Chopp DL, Kirisits MJ, Moran B, Parsek MR (2002b) A mathematical model for quorum sensing in a growing bacterial biofilm. J Ind Microbiol Biotechnol 296:339–346zbMATHCrossRefGoogle Scholar
  29. Cornforth DM, Popat R, McNally L, Gurney J, Scott-Phillips TC, Ivens A, Diggle SP, Brown SP (2014) Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. Proc Natl Acad Sci USA 111:4280–4284. doi: 10.1073/pnas.1319175111 CrossRefGoogle Scholar
  30. Costerton JW, Stewart P, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322CrossRefGoogle Scholar
  31. Cox CD, Peterson GD, Allen MS, Lancaster JM, McCollum JM, Austin D, Yan L, Sayler GS, Simpson ML (2003) Analysis of noise in quorum sensing. OMICS 7:317–334. doi: 10.1089/153623103322452422 CrossRefGoogle Scholar
  32. Czárán T, Hoekstra RF (2009) Microbial communication, cooperation and cheating: Quorum sensing drives the evolution of cooperation in bacteria. PLoS One 4:e6655. doi: 10.1371/journal.pone.0006655 CrossRefGoogle Scholar
  33. Damore JA, Gore J (2012) Understanding microbial cooperation. J Theor Biol 299:31–41. doi: 10.1016/j.jtbi.2011.03.008 MathSciNetzbMATHCrossRefGoogle Scholar
  34. Danino T, Mondragon-Palomino O, Tsimring L, Hasty J (2010) A synchronized quorum of genetic clocks. Nature 463:326–330. doi: 10.1038/nature08753 CrossRefGoogle Scholar
  35. Davies DSC (2011) Annual report of the chief medical officer. Technical Report. British Department of HealthGoogle Scholar
  36. Dilanji GE, Langebrake JB, De Leenheer P, Hagen SJ (2012) Quorum activation at a distance: spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal. J Am Chem Soc 134:5618–5626. doi: 10.1021/ja211593q CrossRefGoogle Scholar
  37. Dockery J, Keener J (2001) A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull Math Biol 63:95–116. doi: 10.1006/bulm.2000.0205 zbMATHCrossRefGoogle Scholar
  38. Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759. doi: 10.1128/AEM.68.4.1754-1759.2002 CrossRefGoogle Scholar
  39. Duddu R, Chopp DL, Moran B (2009) A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnol Bioeng 103:92–104. doi: 10.1002/bit.22233 CrossRefGoogle Scholar
  40. Dumas Z, Ross-Gillespie A, Kmmerli R (2013) Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proc R Soc B 280. doi: 10.1098/rspb.2013.1055
  41. Eberl H, Parker D, van Loosdrecht M (2001) A new deterministic spatio-temporal continuum model for biofilm development. J Theor Med 3:161–175. doi: 10.1080/10273660108833072 zbMATHCrossRefGoogle Scholar
  42. Eberl H, Morgenroth E, Noguera D, Picioreanu C, Rittmann B, van Loosdrecht M, Wanner O (2006) Mathematical modeling of biofilms. Scientific and technical report, IWA Publishing. URL: https://books.google.de/books?id=hRsRy6jSKKAC
  43. Fagerlind MG, Nilsson P, Harlén M, Karlsson S, Rice SA, Kjelleberg S (2005) Modeling the effect of acylated homoserine lactone antagonists in Pseudomonas aeruginosa. Biosystems 80:201–213. doi: 10.1016/j.biosystems.2004.11.008 CrossRefGoogle Scholar
  44. Fagerlind MG, Rice SA, Nilsson P, Harlén M, James S, Charlton T, Kjelleberg S (2003) The role of regulators in the expression of quorum-sensing signals in Pseudomonas aeruginosa. J Mol Microbiol Biotechnol 6:88–100. doi:  10.1159/000076739
  45. Fekete A, Kuttler C, Rothballer M, Hense BA, Fischer D, Buddrus-Schiemann K, Lucio M, Müller J, Schmitt-Kopplin P, Hartmann A (2010) Dynamic regulation of n-acyl-homoserine lactone production and degradation in Pseudomonas putida ISOF. FEMS Microbiol Ecol 72:22–34. doi: 10.1111/j.1574-6941.2009.00828.x CrossRefGoogle Scholar
  46. Fenley AT, Banik SK, Kulkarni RV (2011) Computational modeling of differences in the quorum sensing induced luminescence phenotypes of Vibrio harveyi and Vibrio cholerae. J Theor Biol 274(1):145–153. doi: 10.1016/j.jtbi.2011.01.008 CrossRefGoogle Scholar
  47. Fletcher JA, Doebeli M (2009) A simple and general explanation for the evolution of altruism. Proc R Soc B 276:13–19CrossRefGoogle Scholar
  48. Fozard J, Lees M, King J, Logan B (2012) Inhibition of quorum sensing in a computational biofilm simulation. Biosystems 109:105–114. doi: 10.1016/j.biosystems.2012.02.002 CrossRefGoogle Scholar
  49. Frederick M, Kuttler C, Hense B, Müller J, Eberl H (2010) A mathematical model of quorum sensing in patchy biofilm communities with slow background flow. Can Appl Math Q 18:267–298MathSciNetzbMATHGoogle Scholar
  50. Frederick MR, Kuttler C, Hense BA, Eberl HJ (2011) A mathematical model of quorum sensing regulated eps production in biofilm communities. Theor Biol Med Model. 8. doi: 10.1186/1742-4682-8-8
  51. Friman VP, Diggle SP, Buckling A (2013) Protist predation can favour cooperation within bacterial species. Biol Lett 9. doi: 10.1098/rsbl.2013.0548
  52. Friman VP, Ghoul M, Molin S, Johansen HK, Buckling A (2013b) Pseudomonas aeruginosa adaptation to lungs of cystic fibrosis patients leads to lowered resistance to phage and protist enemies. PLoS One 8:e75380. doi: 10.1371/journal.pone.0075380 CrossRefGoogle Scholar
  53. Fujimoto K, Sawai S (2013) A design principle of group-level decision making in cell populations. PLoS Comput Biol 9:e1003110. doi: 10.1371/journal.pcbi.1003110 CrossRefGoogle Scholar
  54. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria - the luxr-luxi family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275Google Scholar
  55. Galloway WR, Hodgkinson JT, Bowden S, Welch M, Spring DR (2012) Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria. Trends Microbiol 20:449–458. doi: 10.1016/j.tim.2012.06.003 CrossRefGoogle Scholar
  56. García-Contreras R, Maeda T, Wood TK (2013) Resistance to quorum-quenching compounds. Appl Environ Microbiol 79:6840–6846. doi: 10.1128/AEM.02378-13 CrossRefGoogle Scholar
  57. García-Contreras R, Maeda T, Wood TK (2015) Can resistance against quorum-sensing interference be selected?. ISME J 1751–7370. URL: http://www.nature.com/ismej/journal/vaop/ncurrent/full/ismej201584a.html
  58. García-Contreras R, Nunez-Lopez L, Jasso-Chavez R, Kwan BW, Belmont JA, Rangel-Vega A, Maeda T, Wood TK (2015) Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. ISME J 9:115–125. doi: 10.1038/ismej.2014.98 CrossRefGoogle Scholar
  59. García-Ojalvo J, Elowitz MB, Strogatz SH (2004) Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc Natl Acad Sci USA 101:10955–10960. doi: 10.1073/pnas.0307095101 MathSciNetzbMATHCrossRefGoogle Scholar
  60. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem A 81:2340–2361. doi: 10.1021/j100540a008 CrossRefGoogle Scholar
  61. Gölgeli Matur M, Müller J, Kuttler C, Hense BA (2014) An approximative approach for single cell spatial modeling of quorum sensing. J Comput Biol. doi: 10.1089/cmb.2014.0198
  62. González-Barrios AF, Covo V, Medina LM, Vives-Florez M, Achenie L (2009) Quorum quenching analysis in Pseudomonas aeruginosa and Escherichia coli: network topology and inhibition mechanism effect on the optimized inhibitor dose. Bioprocess Biosyst Eng 32:545–556. doi: 10.1007/s00449-008-0276-7 CrossRefGoogle Scholar
  63. González-Barrios AF, Achenie LE (2010) Escherichia coli autoinducer-2 uptake network does not display hysteretic behavior but ai-2 synthesis rate controls transient bifurcation. Biosystems 99:17–26. doi: 10.1016/j.biosystems.2009.08.003 CrossRefGoogle Scholar
  64. Goryachev AB (2009) Design principles of the bacterial quorum sensing gene networks. Wiley Interdiscip Rev Syst Biol Med 1:45–60. doi: 10.1002/wsbm.27 CrossRefGoogle Scholar
  65. Goryachev AB (2011) Understanding bacterial cell-cell communication with computational modeling. Chem Rev 111:238–250. doi: 10.1021/cr100286z CrossRefGoogle Scholar
  66. Goryachev AB, Toh DJ, Lee T (2006) Systems analysis of a quorum sensing network: Design constraints imposed by the functional requirements, network topology and kinetic constants. BioSystems 83: 178–187. URL: http://goryachev.bio.ed.ac.uk/goryachev/sites/sbsweb2.bio.ed.ac.uk.goryachev/files/pdf/BioSys0206
  67. Goryachev AB, Toh DJ, Wee KB, Lee T, Zhang HB, Zhang LH (2005) Transition to quorum sensing in an agrobacterium population: a stochastic model. PLoS Comput Biol 1(4):e37. doi: 10.1371/journal.pcbi.0010037 CrossRefGoogle Scholar
  68. Goss PJE, Peccoud J (1998) Quantitative modeling of stochastic systems in molecular biology by using stochastic petri nets. Proc Natl Acad Sci USA 95:6750–6755. URL: http://www.pnas.org/content/95/12/6750.abstract
  69. Gupta P, Chhibber S, Harjai K (2015) Efficacy of purified lactonase and ciprofloxacin in preventing systemic spread of Pseudomonas aeruginosa in murine burn wound model. Burns 41:153–162CrossRefGoogle Scholar
  70. Gustafsson E, Nilsson P, Karlsson S, Arvidson S (2004) Characterizing the dynamics of the quorum-sensing system in Staphylococcus aureus. J Mol Microbiol Biotechnol 8:232–242. doi:  10.1159/000086704
  71. Hamilton WD (1964) The genetical evolution of social behaviour. J Theor Biol 7:1–16CrossRefGoogle Scholar
  72. Haseltine EL, Arnold FH (2008) Implications of rewiring bacterial quorum sensing. Appl Environ Microbiol 74:437–445CrossRefGoogle Scholar
  73. Hastings JW, Nealson KH (1977) Bacterial bioluminescence. Annu Rev Microbiol 31:549–595. doi: 10.1146/annurev.mi.31.100177.003001 CrossRefGoogle Scholar
  74. Hense BA, Kuttler C, Müller J, Rothballer M, Hartmann A, Kreft JU (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239. doi: 10.1038/nrmicro1600 CrossRefGoogle Scholar
  75. Hense BA, Müller J, Kuttler C, Hartmann A (2012) Spatial heterogeneity of autoinducer regulation systems. Sensors 12(4):4156–4171. doi: 10.3390/s120404156 CrossRefGoogle Scholar
  76. Hense BA, Schuster M (2015) Core principles of bacterial autoinducer systems. Microbiol Mol Biol Rev 79:153–169. doi: 10.1128/MMBR.00024-14 CrossRefGoogle Scholar
  77. Hong D, Saidel WM, Man S, Martin JV (2007) Extracellular noise-induced stochastic synchronization in heterogeneous quorum sensing network. J Theor Biol 245:726–736. URL: http://www.sciencedirect.com/science/article/pii/S0022519306005662
  78. Hunter GAM, Vasquez FG, Keener JP (2013) A mathematical model and quantitative comparison of the small RNA circuit in the Vibrio harveyi and Vibrio cholerae quorum sensing systems. Phys Biol 10:046007. URL: http://stacks.iop.org/1478-3975/10/i=4/a=046007
  79. Jabbari S, King JR, Koerber AJ, Williams P (2010) Mathematical modelling of the agr operon in Staphylococcus aureus. J Math Biol 61:17–54MathSciNetzbMATHCrossRefGoogle Scholar
  80. James S, Nilsson P, James G, Kjelleberg S, Fagersötrm T (2000) Luminescence control in the marine bacterium Vibrio fischeri: an analysis of the dynamics of lux regulation. J Mol Biol 296:1127–1137. doi: 10.1006/jmbi.1999.3484 CrossRefGoogle Scholar
  81. Janakiramen V, Englert D, Jayaman A, Baskaran H (2009) Modeling growth and quorum sensing in biofilms grown in microfluidic chambers. Ann Biomed Eng 37:1206–1216CrossRefGoogle Scholar
  82. Joyner DC, Lindow SE (2000) Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiology 146:2435–2445. URL: http://mic.sgmjournals.org/content/146/10/2435.abstract
  83. Kaplan HB, Greenberg EP (1985) Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol 163:1210–1214. URL: http://jb.asm.org/content/163/3/1210.abstract
  84. Kang Y, Saile E, Schell MA, Denny TP (1999) Quantitative immunofluorescence of regulated EPS gene expression in single cells of Ralstonia solanacearum. Appl Environ Microbiol 65:2356–2362. URL: http://aem.asm.org/content/65/6/2356.abstract
  85. Karlsson D, Karlsson S, Gustafsson E, Normark BH, Nilsson P (2007) Modeling the regulation of the competence-evoking quorum sensing network in Streptococcus pneumoniae. BioSystems 90:211–223CrossRefGoogle Scholar
  86. Kirisits MJ, Margolis JJ, Purevdorj-Gage BL, Vaughan B, Chopp DL, Stoodley P, Parsek MR (2007) Influence of the hydrodynamic environment on quorum sensing in Pseudomonas aeruginosa biofilms. J Bacteriol 189:8357–8360. doi: 10.1128/JB.01040-07 CrossRefGoogle Scholar
  87. Klapper I, Dockery J (2010) Mathematical description of microbial biofilms. SIAM Rev 52:000–000MathSciNetzbMATHCrossRefGoogle Scholar
  88. Koerber A, King J, Ward J, Williams P, Croft J, Sockett R (2002) A mathematical model of partial-thickness burn-wound infection by Pseudomonas aeruginosa: quorum sensing and the build-up to invasion. Bull Math Biol 64:239–259. doi: 10.1006/bulm.2001.0272 zbMATHCrossRefGoogle Scholar
  89. Koerber AJ, King JR, Williams P (2005) Deterministic and stochastic modelling of endosome escape by Staphylococcus aureus: quorum sensing by a single bacterium. J Math Biol 50(4):440–488. doi: 10.1007/s00285-004-0296-0 MathSciNetzbMATHCrossRefGoogle Scholar
  90. Koseska A, Volkov E, Zaikin A, Kurths J (2007) Quantized cycling time in artificial gene networks induced by noise and intercell communication. Phys Rev E 76:020901. doi: 10.1103/PhysRevE.76.020901 CrossRefGoogle Scholar
  91. Kumar S, Kolodkin-Gal I, Engelberg-Kulka H (2013) Novel quorum sensing peptides mediating interspecies bacterial cell death. MBio 4(3):e00314-13. doi: 10.1128/mBio.00314-13 CrossRefGoogle Scholar
  92. Kuttler C, Hense BA (2008) Interplay of two quorum sensing regulation systems of Vibrio fischeri. J Theor Biol 251:167–180. doi: 10.1016/j.jtbi.2007.11.015 MathSciNetCrossRefGoogle Scholar
  93. Kuznetsov A, Krn M, Kopell N (2004) Synchrony in a population of hysteresis-based genetic oscillators. SIAM J Appl Math 65Google Scholar
  94. Langebrake JB, Dilanji GE, Hagen SJ, Leenheer PD (2014) Traveling waves in response to a diffusing quorum sensing signal in spatially-extended bacterial colonies. J Theor Biol 363:53–61. doi: 10.1016/j.jtbi.2014.07.033 MathSciNetzbMATHCrossRefGoogle Scholar
  95. Lazdunski AM, Ventre I, Sturgis JN (2004) Regulatory circuits and communication in Gram-negative bacteria. Nat Rev Microbiol 2:581–592CrossRefGoogle Scholar
  96. Lee J, Jayaraman A, Wood TK (2007) Indole is an inter-species biofilm signal mediated by SdiA. Microbiol 7:42. doi: 10.1186/1471-2180-7-42 Google Scholar
  97. Lesic B, de Lorenzo V, Lepine F, Deziel E, Zhang J, Zhang Q, Padfield K (2007) Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog 3:1229–1239CrossRefGoogle Scholar
  98. Li J, Wang L, Hashimoto Y, Tsao CY, Wood TK, Valdes JJ, Zafiriou E, Bentley WE (2006) A stochastic model of Escherichia coli ai-2 quorum signal circuit reveals alternative synthesis pathways. Mol Syst Biol 2. doi: 10.1038/msb4100107
  99. Liu X, Zhou P, Wang R (2012) Switch-like regulation of signal transduction by small RNA-mediated quorum sensing. In: 2012 IEEE 6th international conference on systems biology (ISB), pp 164–168. doi: 10.1109/ISB.2012.6314130
  100. Liu X, Zhou P, Wang R (2013) Small rna-mediated switch-like regulation in bacterial quorum sensing. IET Syst Biol 7:182–187. doi: 10.1049/iet-syb.2012.0059 MathSciNetCrossRefGoogle Scholar
  101. Lyon GJ, Novick RP (2004) Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25:1389–1403CrossRefGoogle Scholar
  102. Maeda T, García-Contreras R, Pu M, Sheng L, García LR, Tomas M, Wood TK (2012) Quorum quenching quandary: resistance to antivirulence compounds. ISME J 6:493–501. doi: 10.1038/ismej.2011.122 CrossRefGoogle Scholar
  103. Majumdar S, Datta S, Roy S (2012) Mathematical modelling of quorum sensing and bioluminescence in bacteria. IJAAS 1(3):139–146Google Scholar
  104. McMillen D, Kopell N, Hasty J, Collins JJ (2002) Synchronizing genetic relaxation oscillators by intercell signaling. Proc Natl Acad Sci USA 99:679–684. doi: 10.1073/pnas.022642299 CrossRefGoogle Scholar
  105. Mehra S, Charaniya S, Takano E, Hu WS (2008) A bistable gene switch for antibiotic biosynthesis: the butyrolactone regulon in Streptomyces coelicolor. PLoS One 3:e2724. doi: 10.1371/journal.pone.0002724 CrossRefGoogle Scholar
  106. Mehta P, Goyal S, Long T, Bassler BL, Wingreen NS (2009) Information processing and signal integration in bacterial quorum sensing. Mol Syst Biol 5. doi: 10.1038/msb.2009.79
  107. Melke P, Sahlin P, Levchenko A, Jönsson H (2010) A cell-based model for quorum sensing in heterogeneous bacterial colonies. PLoS Comput Biol 6(6):e1000819MathSciNetCrossRefGoogle Scholar
  108. Megerle JA, Fritz G, Gerland U, Jung K, Rädler JO (2008) Timing and dynamics of single cell gene expression in the Arabinose utilization system. Biophys J 95: 2103–2115. URL: http://linkinghub.elsevier.com/retrieve/pii/S0006349508701681
  109. Meyer A, Megerle JA, Kuttler C, Müller J, Aguilar C, Eberl L, Hense BA, Rädler JO (2012) Dynamics of ahl mediated quorum sensing under flow and non-flow conditions. Phys Biol 9: 026007. URL: http://stacks.iop.org/1478-3975/9/i=2/a=026007
  110. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. doi: 10.1146/annurev.micro.55.1.165 CrossRefGoogle Scholar
  111. Müller J, Kuttler C, Hense BA (2008a) Sensitivity of the quorum sensing system is achieved by low pass filtering. Biosystems 92:76–81. doi: 10.1016/j.biosystems.2007.12.004 CrossRefGoogle Scholar
  112. Müller J, Kuttler C, Hense BA, Rothballer M, Hartmann A (2006) Cell-cell communication by quorum sensing and dimension-reduction. J Math Biol 53:672–702. doi: 10.1007/s00285-006-0024-z MathSciNetzbMATHCrossRefGoogle Scholar
  113. Müller J, Kuttler C, Hense BA, Zeiser S, Liebscher V (2008) Transcription, intercellular variability and correlated random walk. Math Biosci 216:30–39. doi: 10.1016/j.mbs.2008.08.003 MathSciNetzbMATHCrossRefGoogle Scholar
  114. Müller J, Uecker H (2013) Approximating the dynamics of communicating cells in a diffusive medium by odeshomogenization with localization. J Math Biol 67:1023–1065. doi: 10.1007/s00285-012-0569-y MathSciNetzbMATHCrossRefGoogle Scholar
  115. Nadell CD, Xavier JB, Levin SA, Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6:e14. doi: 10.1371/journal.pbio.0060014 CrossRefGoogle Scholar
  116. Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518. URL: http://mmbr.asm.org/content/43/4/496.short
  117. Netotea S, Bertani I, Steindler L, Kerényi Á, Venturi V, Pongor S (2009) A simple model for the early events of quorum sensing in Pseudomonas aeruginosa: modeling bacterial swarming as the movement of an “activation zone”. Biol Direct 4:6–6. doi: 10.1186/1745-6150-4-6 CrossRefGoogle Scholar
  118. Nilsson P, Olofsson A, Fagerlind M, Fagerström T, Rice S, Kjelleberg S, Steinberg P (2001) Kinetics of the ahl regulatory system in a model biofilm system: how many bacteria constitute a “quorum”? J Mol Biol 309(3):631–640. doi: 10.1006/jmbi.2001.4697 CrossRefGoogle Scholar
  119. Ofria C, Wilke CO (2004) Avida: A software platform for research in computational evolutionary biology. Artif Life 10:191–229. doi: 10.1162/106454604773563612 CrossRefGoogle Scholar
  120. O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL (2013) A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci USA 110:17981–17986CrossRefGoogle Scholar
  121. Palmer KL, Aye LM, Whiteley M (2007) Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol 189:8079–8087CrossRefGoogle Scholar
  122. Perez P, Weiss J, Hagen S (2011) Noise and crosstalk in two quorum-sensing inputs of Vibrio fischeri. BMC Syst Biol 5:153. doi: 10.1186/1752-0509-5-153 CrossRefGoogle Scholar
  123. Pérez-Jiménez MJ, Romero-Campero FJ (2006) P systems, a new computational modelling tool for systems biology. In: Priami C, Plotkin G (eds) Transactions on computational systems biology VI, vol. 4220 of Lecture Notes in Computer Science, Springer, Berlin, pp 176–197. doi: 10.1007/11880646_8
  124. Pérez-Velázquez J, Quiñones B, Hense BA, Kuttler C (2015) A mathematical model to investigate quorum sensing regulation and its heterogeneity in Pseudomonas syringae on leaves. Ecol Complex 21:128–141. doi: 10.1016/j.ecocom.2014.12.003 CrossRefGoogle Scholar
  125. Picioreanu C, Kreft JU, van Loosdrecht MCM (2004) Particle-based multidimensional multispecies biofilm model. Appl Environ Microbiol 70:3024–3040. doi: 10.1128/AEM.70.5.3024-3040.2004 CrossRefGoogle Scholar
  126. Platt TG, Fuqua C (2010) What’s in a name? The semantics of quorum sensing. Trends Microbiol 18:383–387. doi: 10.1016/j.tim.2010.05.003 CrossRefGoogle Scholar
  127. Popat R, Crusz SA, Messina M, Williams P, West SA, Diggle SP (2012) Quorum-sensing and cheating in bacterial biofilms. Proc R Soc B 279:4765–4771. doi: 10.1098/rspb.2012.1976 CrossRefGoogle Scholar
  128. Pradhan BB, Chatterjee S (2014) Reversible non-genetic phenotypic heterogeneity in bacterial quorum sensing. Mol Microbiol 22:557–569. doi: 10.1111/mmi.12575 CrossRefGoogle Scholar
  129. Queller DC (1992) Quantitative genetics, inclusive fitness, and group selection. Am Nat pp 540–558Google Scholar
  130. Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365–370. doi: 10.1016/S0966-842X(02)02400-9 CrossRefGoogle Scholar
  131. Romero-Campero FJ, Pérez-Jiménez MJ (2008) A model of the quorum sensing system in Vibrio fischeri using p systems. Artif Life 14:95–109. doi: 10.1162/artl.2008.14.1.95 CrossRefGoogle Scholar
  132. Rumbaugh KP, Diggle SP, Watters CM, Ross-Gillespie A, Griffin AS, West SA (2009) Quorum sensing and the social evolution of bacterial virulence. Curr Biol 19:341–345. doi: 10.1016/j.cub.2009.01.050 CrossRefGoogle Scholar
  133. Schaadt N, Steinbach A, Hartmann R, Helms V (2013) Rule-based regulatory and metabolic model for quorum sensing in P. aeruginosa. BMC Syst Biol 7:81. doi: 10.1186/1752-0509-7-81 CrossRefGoogle Scholar
  134. Sepulchre JA, Reverchon S, Nasser W (2007) Modeling the onset of virulence in a pectinolytic bacterium. J Theor Biol 244:239–257. doi: 10.1016/j.jtbi.2006.08.010 MathSciNetCrossRefGoogle Scholar
  135. Smith R, Coast J (2013) The true cost of antimicrobial resistance. BMJ 346. doi: 10.1136/bmj.f1493
  136. Stacy AR, Diggle SP, Whiteley M (2012) Rules of engagement: defining bacterial communication. Curr Opin Microbiol 15:155–161. doi: 10.1016/j.mib.2011.11.007 CrossRefGoogle Scholar
  137. Taga ME, Bassler BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci USA 100:14549–14554. doi: 10.1073/pnas.1934514100 CrossRefGoogle Scholar
  138. Tang W, Wu Q, Saunders J (2006) A novel model for bacterial foraging in varying environments. In: Gavrilova M, Gervasi O, Kumar V, Tan C, Taniar D, Laganá A, Mun Y, Choo H (eds) Computational science and its applications-ICCSA 2006, vol. 3980 of Lecture Notes in Computer Science, Springer, Berlin, pp 556–565Google Scholar
  139. Tang W, Wu Q, Saunders J (2007) Individual-based modeling of bacterial foraging with quorum sensing in a time-varying environment. In: Marchiori E, Moore J, Rajapakse J (eds) Evolutionary computation,machine learning and data mining in bioinformatics, vol. 4447 of Lecture Notes in Computer Science, Springer, Berlin, pp 280–290. doi: 10.1007/978-3-540-71783-6_27
  140. Tanouchi Y, Tu D, Kim J, You L (2008) Noise reduction by diffusional dissipation in a minimal quorum sensing motif. PLoS Comput Biol 4:e1000167. doi: 10.1371/journal.pcbi.1000167 CrossRefGoogle Scholar
  141. Teng SW, Wang Y, Tu KC, Long T, Mehta P, Wingreen NS, Bassler BL, Ong N (2010) Measurement of the copy number of the master quorum-sensing regulator of a bacterial cell. Biophys J 98:2024–2031. doi: 10.1016/j.bpj.2010.01.031 CrossRefGoogle Scholar
  142. Tu KC, Long T, Svenningsen SL, Wingreen NS, Bassler BL (2010) Negative feedback loops involving small regulatory RNAs precisely control the vibrio harveyi quorum-sensing response. Mol Cell 37:567–579. doi: 10.1016/j.molcel.2010.01.022 CrossRefGoogle Scholar
  143. Uecker H, Müller J, Hense B (2014) Individual-based model for quorum sensing with background flow. Bull Math Biol 76:1727–1746. doi: 10.1007/s11538-014-9974-2 MathSciNetzbMATHCrossRefGoogle Scholar
  144. Ullner E, Zaikin A, Volkov EI, García-Ojalvo J (2007) Multistability and clustering in a population of synthetic genetic oscillators via phase-repulsive cell-to-cell communication. Phys Rev Lett 99:148103. doi: 10.1103/PhysRevLett.99.148103 CrossRefGoogle Scholar
  145. Uroz S, Chhabra SR, Cámara M, Williams P, Oger P, Dessaux Y (2005) N-acylhomoserine lactone quorum-sensing molecules are modified and degraded by rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151(10):3313–3322. doi: 10.1099/mic.0.27961-0 CrossRefGoogle Scholar
  146. Vainstein V, Kirnasovsky OU, Kogan Y, Agur Z (2012) Strategies for cancer stem cell elimination: Insights from mathematical modeling. J Theor Biol 298:32–41. doi: 10.1016/j.jtbi.2011.12.016 MathSciNetCrossRefGoogle Scholar
  147. van Gestel J, Nowak MA, Tarnita CE (2012) The evolution of cell-to-cell communication in a sporulating bacterium. PLoS Comput Biol 8:e1002818. doi: 10.1371/journal.pcbi.1002818 MathSciNetCrossRefGoogle Scholar
  148. Vaughan B, Smith B, Chopp DL (2010) The influence of fluid flow on modeling quorum sensing in bacterial biofilms. Bull Math Biol 72(5):1143–1165. doi: 10.1007/s11538-009-9485-8 zbMATHCrossRefGoogle Scholar
  149. Viretta AU, Fussenegger M (2004) Modeling the quorum sensing regulatory network of human-pathogenic Pseudomonas aeruginosa. Biotechnol Prog 20:670–678. doi: 10.1021/bp034323l CrossRefGoogle Scholar
  150. Wang M, Schaefer AL, Dandekar AA, Greenberg EP (2015) Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. Proc Natl Acad Sci USA 112:2187–2191. doi: 10.1073/pnas.1500704112 CrossRefGoogle Scholar
  151. Ward J (2008) Mathematical modeling of quorum-sensing control in biofilms. In: Balaban N (ed) Control of biofilm infections by signal manipulation, vol. 2 of Springer Series on Biofilms. Springer, Berlin, pp 79–108Google Scholar
  152. Ward J, King J (2012) Thin-film modelling of biofilm growth and quorum sensing. J Eng Math 73:71–92. doi: 10.1007/s10665-011-9490-4 MathSciNetCrossRefGoogle Scholar
  153. Ward JP, King JR, Koerber AJ, Croft JM, Sockett RE, Williams P (2003) Early development and quorum sensing in bacterial biofilms. J Math Biol 47:23–55. doi: 10.1007/s00285-002-0190-6 MathSciNetzbMATHCrossRefGoogle Scholar
  154. Ward JP, King JR, Koerber AJ, Croft JM, Sockett RE, Williams P (2004) Cell-signalling repression in bacterial quorum sensing. Math Med Biol 21:169–204. doi: 10.1093/imammb/21.3.169 zbMATHCrossRefGoogle Scholar
  155. Ward JP, King JR, Koerber AJ, Williams P, Croft JM, Sockett RE (2001) Mathematical modelling of quorum sensing in bacteria. Math Med Biol 18:263–292. doi: 10.1093/imammb/18.3.263 zbMATHCrossRefGoogle Scholar
  156. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346. doi: 10.1146/annurev.cellbio.21.012704.131001 CrossRefGoogle Scholar
  157. Weber M, Buceta J (2013) Dynamics of the quorum sensing switch: stochastic and non-stationary effects. BMC Syst Biol 7:6. doi: 10.1186/1752-0509-7-6 CrossRefGoogle Scholar
  158. West SA, Griffin AS, Gardner A (2007) Evolutionary explanations for cooperation. Curr Biol 17:R661–R672CrossRefGoogle Scholar
  159. West SA, Winzer K, Gardner A, Diggle S (2012) Quorum sensing and the confusion about diffusion. Trends Microbiol 20:586–594. doi: 10.1016/j.tim.2012.09.004 CrossRefGoogle Scholar
  160. Whitaker RD, Pember S, Wallace BC, Brodley CE, Walt DR (2011) Single cell time-resolved quorum responses reveal dependence on cell density and configuration. J Biol Chem 286:21623–21632. URL: http://www.jbc.org/content/286/24/21623.abstract
  161. Wilder CN, Allada G, Schuster M (2009) Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections. Infect Immun 77:5631–5639CrossRefGoogle Scholar
  162. Williams JW, Cui X, Levchenko A, Stevens AM (2008) Robust and sensitive control of a quorum-sensing circuit by two interlocked feedback loops. Mol Syst Biol 4:234–234. doi: 10.1038/msb.2008.70 CrossRefGoogle Scholar
  163. Winzer K, Hardie KR, Williams P (2002) Bacterial cell-to-cell communication: sorry, can’t talk now gone to lunch!. Curr Opin Microbiol 5:216–222. doi: 10.1016/S1369-5274(02)00304-1 CrossRefGoogle Scholar
  164. Wynendaele E, Bronselaer A, Nielandt J, D’Hondt M, Stalmans S, Bracke N, Verbeke F, Van De Wiele C, De Tré G, De Spiegeleer B (2013) Quorumpeps database: chemical space, microbial origin and functionality of quorum sensing peptides. Nucleic Acids Res 41:655–659. doi: 10.1093/nar/gks1137 CrossRefGoogle Scholar
  165. You L, Cox RS, Weiss R, Arnold FH (2004) Programmed population control by cell-cell communication and regulated killing. Nature 428:868–871. doi: 10.1038/nature02491 CrossRefGoogle Scholar
  166. Zhou T, Zhang J, Yuan Z, Chen L (2008) Synchronization of genetic oscillators. Chaos 18. doi: 10.1063/1.2978183
  167. Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci 99:3129–3134CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2016

Authors and Affiliations

  1. 1.Institute of Computational BiologyHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
  2. 2.Centre for Mathematical ScienceTechnical University MunichGarchingGermany
  3. 3.Department of Molecular Biology and GeneticsBilkent UniversityAnkaraTurkey
  4. 4.Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMexico

Personalised recommendations