Advertisement

Bulletin of Mathematical Biology

, Volume 78, Issue 1, pp 110–131 | Cite as

Protein Synthesis Driven by Dynamical Stochastic Transcription

  • Guilherme C. P. InnocentiniEmail author
  • Michael Forger
  • Ovidiu Radulescu
  • Fernando Antoneli
Original Article

Abstract

In this manuscript, we propose a mathematical framework to couple transcription and translation in which mRNA production is described by a set of master equations, while the dynamics of protein density is governed by a random differential equation. The coupling between the two processes is given by a stochastic perturbation whose statistics satisfies the master equations. In this approach, from the knowledge of the analytical time-dependent distribution of mRNA number, we are able to calculate the dynamics of the probability density of the protein population.

Keywords

Gene expression Stochasticity Exact solutions  Dynamics 

Mathematics Subject Classification

92B05 

Notes

Acknowledgments

We would like to thank the referees for their insights. Work supported by FAPESP, SP, Brazil (G. I., contract 2012/04723-4) and CNPq, Brazil (G. I., contract 202238/2014-8; M. F., contract 307238/2011-3; F. A., contract 306362/2012-0). O. R. thanks CNRS and LABEX Epigenmed for support.

References

  1. Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs and mathematical tables. Government Printing Office, U.SzbMATHGoogle Scholar
  2. Arnold L (1998) Random dynamical systems. Springer, BerlinCrossRefzbMATHGoogle Scholar
  3. Blake WJ, Kaern M, Cantor CR, Collins JJ (2003) Noise in eukaryotic gene expression. Nature 422:633–637CrossRefGoogle Scholar
  4. Cai L, Friedman N, Xie X (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440(7082):358–62. doi: 10.1038/nature04599 CrossRefGoogle Scholar
  5. Cogburn R, Torrez WC (1981) Birth and death processes with random environments in continuous time. J Appl Probab 18(1):19–30CrossRefMathSciNetzbMATHGoogle Scholar
  6. Crudu A, Debussche A, Muller A, Radulescu O (2012) Convergence of stochastic gene networks to hybrid piecewise deterministic processes. Ann Appl Probab 22(5):1822–1859CrossRefMathSciNetzbMATHGoogle Scholar
  7. Crudu A, Debussche A, Radulescu O (2009) Hybrid stochastic simplifications for multiscale gene networks. BMC Syst Biol 3(1):89CrossRefGoogle Scholar
  8. Delbrück M (1940) Statistical fluctuations in autocatalytic reactions. J Chem Phys 8:120–124CrossRefGoogle Scholar
  9. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186. doi: 10.1126/science.1070919 CrossRefGoogle Scholar
  10. Ferguson M, Le Coq D, Jules M, Aymerich S, Radulescu O, Declerck N, Royer C (2012) Reconciling molecular regulatory mechanisms with noise patterns of bacterial metabolic promoters in induced and repressed states. Proc Natl Acad Sci USA 109(1):155–160CrossRefGoogle Scholar
  11. Ferreira RC, Bosco FAR, Briones MRS (2009) Scaling properties of transcription profiles in gene networks. Int J Bioinform Res Appl 5(2):178–186CrossRefGoogle Scholar
  12. Ferreira RC, Briones MRS, Antoneli F. A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks. arXiv:1309.0765 (2013)
  13. Friedman N, Cai L, Xie XS (2006) Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys Rev Lett 97(16):168,302CrossRefGoogle Scholar
  14. Golding I, Paulsson J, Zawilski S, Cox E (2005) Real-time kinetics of gene activity in individual bacteria. Cell 123(6):1025–36. doi: 10.1016/j.cell.2005.09.031 CrossRefGoogle Scholar
  15. Hornos JEM, Schultz D, Innocentini GCP, Wang J, Walczak AM, Onuchic JN, Wolynes PG (2005) Self-regulating gene: an exact solution. Phys Rev E 72(5):e051,907. doi: 10.1103/PhysRevE.72.051907 CrossRefMathSciNetGoogle Scholar
  16. Innocentini GCP, Forger M, Ramos A, Radulescu O, Hornos JEM (2013) Multimodality and flexibility in stochastic gene expression. Bull Math Biol 75:2600–2630CrossRefMathSciNetzbMATHGoogle Scholar
  17. Innocentini GCP, Hornos JEM (2007) Modeling stochastic gene expression under repression. J Math Biol 55(3):413–431. doi: 10.1007/s00285-007-0090-x CrossRefMathSciNetzbMATHGoogle Scholar
  18. Iyer-Biswas S, Hayot F, Jayaprakash C (2009) Stochasticity of gene products from transcriptional pulsing. Phys Rev E 79:031,911CrossRefGoogle Scholar
  19. Kepler TB, Elston TC (2001) Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J 81(6):3116–3136. doi: 10.1016/S0006-3495(01)75949-8 CrossRefGoogle Scholar
  20. Lipniacki T, Paszek P, Marciniak-Czochra A, Brasier AR, Kimmel M (2006) Transcriptional stochasticity in gene expression. J Theor Biol 238:348–367. doi: 10.1016/j.jtbi.2005.05.032 CrossRefMathSciNetGoogle Scholar
  21. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002) Regulation of noise in the expression of a single gene. Nat Genet 31:69–73CrossRefGoogle Scholar
  22. Paulsson J (2005) Models of stochastic gene expression. Phys Life Rev 2:157–175CrossRefGoogle Scholar
  23. Peccoud J, Ycart B (1995) Markovian modelling of gene product synthesis. Theor Popul Biol 48:222–234CrossRefzbMATHGoogle Scholar
  24. Pirone J, Elston T (2004) Fluctuations in transcription factor binding can explain the graded and binary responses observed in inducible gene expression. J Theor Biol 226:111–121CrossRefMathSciNetGoogle Scholar
  25. Ramos AF, Innocentini GCP, Hornos JEM (2011) Exact time-dependent solutions for a self-regulating gene. Phys Rev E 83(6):e062,902. doi: 10.1103/PhysRevE.83.062902 CrossRefGoogle Scholar
  26. Raser JM, O’Shea EK (2004) Control of stochasticity in eukaryotic gene expression. Science 304(5678):1811–1814. doi: 10.1126/science.1098641 CrossRefGoogle Scholar
  27. Shahrezaei V, Swain PS (2008) Analytical distributions for stochastic gene expression. Proc Natl Acad Sci USA 105(45):17256–17261. doi: 10.1073/pnas.0803850105 CrossRefGoogle Scholar
  28. van Kampen NG (2007) Stochastic processes in physics and chemistry, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  29. Yu J, Xiao J, Ren X, Lao K, Xie XS (2006) Probing gene expression in live cells, one protein molecule at a time. Science 311(5767):1600–1603. doi: 10.1126/science.1119623 CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2015

Authors and Affiliations

  • Guilherme C. P. Innocentini
    • 1
    • 2
    Email author
  • Michael Forger
    • 1
  • Ovidiu Radulescu
    • 2
  • Fernando Antoneli
    • 3
  1. 1.Departamento de Matemática Aplicada, Instituto de Matemática e EstatísticaUniversidade de São PauloSão PauloBrazil
  2. 2.DIMNP, UMR 5235Université de Montpellier 2Montpellier Cedex 5France
  3. 3.Laboratório de Genômica Evolutiva e Biocomplexidade & DISEscola Paulista de Medicina, Universidade Federal de São PauloSão PauloBrazil

Personalised recommendations