Algebraic Systems Biology: A Case Study for the Wnt Pathway


Steady-state analysis of dynamical systems for biological networks gives rise to algebraic varieties in high-dimensional spaces whose study is of interest in their own right. We demonstrate this for the shuttle model of the Wnt signaling pathway. Here, the variety is described by a polynomial system in 19 unknowns and 36 parameters. It has degree 9 over the parameter space. This case study explores multistationarity, model comparison, dynamics within regions of the state space, identifiability, and parameter estimation, from a geometric point of view. We employ current methods from computational algebraic geometry, polyhedral geometry, and combinatorics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. Bates D, Hauenstein J, Sommese A, Wampler C (2013) Numerically solving polynomial systems with Bertini. Software, Environments, and Tools, vol 25. SIAM, Philadelphia

  2. Bates D, Gross E, Leykin A, Rodriguez J (2013) Bertini for Macaulay2. arXiv:1310.3297

  3. Chen C, Davenport J, Moreno Maza M, Xia B, Xiao R (2013) Computing with semi-algebraic sets: relaxation techniques and effective boundaries. J Symb Comput 52:72–96

    Article  MathSciNet  MATH  Google Scholar 

  4. Craciun G, Feinberg M (2005) Multiple equilibria in complex chemical reaction networks: I. The injectivity property. SIAM J Appl Math 65:1526–1546

    Article  MathSciNet  MATH  Google Scholar 

  5. Draisma J, Horobet E, Ottaviani G, Sturmfels B, Thomas RR (2015) The Euclidean distance degree of an algebraic variety. Found Comput Math (to appear). arXiv:1309.0049

  6. Faugère J-C, Moroz G, Rouillier F, Safey El Din M (2008) Classification of the perspective-three-point problem, discriminant variety and real solving polynomial systems of inequalities. In: ISSAC 2008. ACM, New York, pp 79–86

  7. Feliu E, Wiuf C (2012) Variable elimination in chemical reaction networks with mass-action kinetics. SIAM J Appl Math 72:959–981

    Article  MathSciNet  MATH  Google Scholar 

  8. Garcia-Puente L, Petrovic S, Sullivant S (2013) Graphical models. J Softw Algebra Geom 5:1–7

    Article  MathSciNet  Google Scholar 

  9. Grayson D, Stillman M (2002) Macaulay2, a software system for research in algebraic geometry.

  10. Gross E, Davis B, Ho K, Bates D, Harrington H (2015) Model selection using numerical algebraic geometry. arXiv:1507.04331

  11. Harrington H, Ho K, Thorne T, Stumpf M (2012) Parameter-free model discrimination criterion based on steady state coplanarity. Proc Natl Acad Sci 109:15746–15751

    Article  Google Scholar 

  12. Karp R, Pérez Millán M, Desgupta T, Dickenstein A, Gunawardena J (2012) Complex-linear invariants of biochemical networks. J Theor Biol 311:130–138

    Article  Google Scholar 

  13. Klipp E, Liebermeister W, Wierling C, Kowald A, Lehrach H, Herwig R (2009) Systems biology. Wiley, New York

    Google Scholar 

  14. Király F, Rosen Z, Theran L (2013) Algebraic matroids with graph symmetry. arXiv:1312.3777

  15. Király F, Theran L, Tomioka R (2015) The algebraic combinatorial approach for low-rank matrix completion. J Mach Learn Res 16:1391–1436

    Google Scholar 

  16. MacLean A, Harrington H, Stumpf M, Byrne H (2015) Mathematical and statistical techniques for systems medicine: the Wnt signaling pathway as a case study. In: Schmitz, ULF, Wolkenhauer, OLAF (eds) Systems Medicine. Methods Molecular Biology, vol 1386. Springer, New York

  17. MacLean A, Rosen Z, Byrne H, Harrington H (2015) Parameter-free methods distinguish Wnt pathway models and guide design of experiments. Proc Natl Acad Sci 112:2652–2657

    Article  Google Scholar 

  18. Meshkat N, Sullivant S (2014) Identifiable reparametrizations of linear compartment models. J Symb Comput 63:46–67

    Article  MathSciNet  MATH  Google Scholar 

  19. Morgan A, Sommese A (1989) Coefficient-parameter polynomial continuation. Appl Math Comput 29:123–160

    Article  MathSciNet  MATH  Google Scholar 

  20. Ottaviani G, Spaenlehauer P-J, Sturmfels B (2014) Exact solutions in structured low-rank approximation. SIAM J Matrix Anal Appl 35:1521–1542

    Article  MathSciNet  MATH  Google Scholar 

  21. Oxley J (2011) Matroid theory. Oxford University Press, Oxford

    Google Scholar 

  22. Pérez Millán M, Dickenstein A, Shiu A, Conradi C (2012) Chemical reaction systems with toric steady states. Bull Math Biol 74:1027–1065

    Article  MathSciNet  MATH  Google Scholar 

  23. Rodriguez J, Tang X (2015) Data-discriminants of likelihood equations. In: Proceedings of the 2015 ACM on international symposium on symbolic and algebraic computation, pp 307–314

  24. Rosen Z (2014) Computing algebraic matroids. arXiv:1403.8148

  25. Shiu A, Sturmfels B (2010) Siphons in chemical reaction networks. Bull Math Biol 72:1448–1463

    Article  MathSciNet  MATH  Google Scholar 

  26. Tan CW, Gardiner BS, Hirokawa Y, Layton MJ, Smith DW, Burgess AW (2012) Wnt Signalling pathway parameters for mammalian cells. PLoS ONE 7:e31882

    Article  Google Scholar 

  27. Verschelde J (1999) Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans Math Softw 25:251–276

    Article  MATH  Google Scholar 

  28. Voit E (2012) A first course in systems biology. Garland Science, New York

    Google Scholar 

Download references


This project was supported by UK Royal Society International Exchange Award 2014/R1 IE140219. EG, BS and HAH initiated discussions at an American Institute of Mathematics workshop in Palo Alto. Part of the work was carried out at the Simons Institute for Theory of Computing in Berkeley. HAH gratefully acknowledges EPSRC Fellowship EP/K041096/1. EG, ZR, and BS were also supported by the US National Science Foundation, through Grants DMS-1304167, DMS-0943745, and DMS-1419018, respectively. Thanks to Helen Byrne and Reinhard Laubenbacher for comments on early drafts of the paper.

Author information



Corresponding author

Correspondence to Bernd Sturmfels.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gross, E., Harrington, H.A., Rosen, Z. et al. Algebraic Systems Biology: A Case Study for the Wnt Pathway. Bull Math Biol 78, 21–51 (2016).

Download citation


  • Biochemical reaction networks
  • Nonlinear algebra
  • \(\beta \)-catenin/Wnt signaling
  • Steady-state variety
  • Polyhedra
  • Algebraic matroids