Bulletin of Mathematical Biology

, Volume 77, Issue 7, pp 1437–1455 | Cite as

A Framework for Inferring Unobserved Multistrain Epidemic Subpopulations Using Synchronization Dynamics

Original Article

Abstract

A new method is proposed to infer unobserved epidemic subpopulations by exploiting the synchronization properties of multistrain epidemic models. A model for dengue fever is driven by simulated data from secondary infective populations. Primary infective populations in the driven system synchronize to the correct values from the driver system. Most hospital cases of dengue are secondary infections, so this method provides a way to deduce unobserved primary infection levels. We derive center manifold equations that relate the driven system to the driver system and thus motivate the use of synchronization to predict unobserved primary infectives. Synchronization stability between primary and secondary infections is demonstrated through numerical measurements of conditional Lyapunov exponents and through time series simulations.

Keywords

Multistrain disease models Inferring unobserved populations Center manifolds Synchronization 

References

  1. Anderson RM, May RM (1991) Infectious diseases of humans. Oxford University Press, OxfordGoogle Scholar
  2. Bianco S, Shaw LB, Schwartz IB (2009) Epidemics with multistrain interactions: the interplay between cross immunity and antibody-dependent enhancement. Chaos 19:043123CrossRefGoogle Scholar
  3. Billings L, Schwartz IB, Shaw LB, McCrary M, Burke DS, Cummings DAT (2007) Instabilities in multiserotype disease models with antibody-dependent enhancement. J Theor Biol 246:18MathSciNetCrossRefGoogle Scholar
  4. Bjornstad ON, Finkenstadt BF, Grenfell BT (2002) Dynamics of measles epidemics: estimating scaling of transmission rates using a time series sir model. Ecolo Monogr 72(2):169–184CrossRefGoogle Scholar
  5. Blarer A, Doebeli M (1999) Resonance effects and outbreaks in ecological time series. Ecol Lett 2:167–177CrossRefGoogle Scholar
  6. Boccaletti S, Kurths J, Osipov G, Valladares DL, Zhou CS (2002) The synchronization of chaotic systems. Phys Rep Rev Sect Phys Lett 366:1–101MathSciNetMATHGoogle Scholar
  7. Carr J (1981) Applications of centre manifold theory. Springer, BerlinCrossRefMATHGoogle Scholar
  8. Chen S, Lü J (2002) Parameters identification and synchronization of chaotic systems based upon adaptive control. Phys Lett A 299:353MathSciNetCrossRefMATHGoogle Scholar
  9. Chicone C, Latushkin Y (1997) Center manifolds for infinite dimensional nonautonomous differential equations. J Differ Equ 141:356–399MathSciNetCrossRefMATHGoogle Scholar
  10. Cummings DAT, Schwartz IB, Billings L, Shaw LB, Burke DS (2005) Dynamic effects of antibody-dependent enhancement on the fitness of viruses. Proc Nat Acad Sci USA 102(42):15259–15264CrossRefGoogle Scholar
  11. Dedieu H, Ogorzalek MJ (1997) Identifiability and identification of chaotic systems based on adaptive synchronization. IEEE Trans Circuits Syst I Fundam Theory Appl 44:948MathSciNetCrossRefGoogle Scholar
  12. Duan J, Lu K, Schmalfuss B (2003) Invariant manifolds for stochastic partial differential equations. Ann. Probab. 31(4):2109–2135MathSciNetCrossRefMATHGoogle Scholar
  13. Ferguson NM, Donnelly CA, Anderson RM (1999) Transmission dynamics and epidemiology of dengue: insights from age-stratified sero-prevalence surveys. Philos Trans R Soc Lond B Biol Sci 354:757–768CrossRefGoogle Scholar
  14. Forgoston E, Billings L, Schwartz IB (2009) Accurate noise projection for reduced stochastic epidemic models. Chaos 19:043110MathSciNetCrossRefGoogle Scholar
  15. Forgoston E, Schwartz IB (2013) Predicting unobserved exposures from seasonal epidemic data. Bull Math Biol 75:1450MathSciNetCrossRefMATHGoogle Scholar
  16. Gibson GJ, Kleczkowski A, Gilligan CA (2004) Bayesian analysis of botanical epidemics using stochastic compartmental models. PNAS 101:12120CrossRefGoogle Scholar
  17. Huang L, Lin L (2013) Parameter identification and synchronization of uncertain chaotic systems based on sliding mode observer. Mathe Probl Eng 2013:859304MathSciNetGoogle Scholar
  18. Lekone PE, Finkenstädt BF (2006) Statistical inference in a stochastic epidemic seir model with control intervention: ebola as a case study. Biometrics 62:1170MathSciNetCrossRefMATHGoogle Scholar
  19. Nagao Y, Koelle K (2008) Decreases in dengue transmission may act to increase the incidence of dengue hemorrhagic fever. Proc Natl Acad Sci USA 105:2238–2243CrossRefGoogle Scholar
  20. Nisalak A, Endy TP, Nimmannitya S, Kalayanarooj S, Thisayakorn U, Scott RM, Burke DS, Hoke CH, Innis BL, Vaughn DW (2003) Serotype-specific dengue virus circulation and dengue disease in Bangkok, Thailand from 1973 to 1999. Am J Trop Med Hyg 68:191–202Google Scholar
  21. Parlitz U, Junge L, Kocarev L (1996) Synchronization-based parameter estimation from time series. Phys Rev E 54:6253CrossRefGoogle Scholar
  22. Rigau-Perez J, Clark G, Gubler D, Reiter P, Sanders E, Vancevorndam A (1998) Dengue and dengue hemmorrhagic fever. Lancet 352:971–977CrossRefGoogle Scholar
  23. Roberts AJ (2008) Normal form transforms separate slow and fast modes in stochastic dynamical systems. Phys A 387(1):12–38MathSciNetCrossRefGoogle Scholar
  24. Schaffer WM, Kendall BE, Tidd CW, Olsen LF (1993) Transient periodicity and episodic predictability in biological dynamics. IMA J Math Appl Med 10:227–247CrossRefMATHGoogle Scholar
  25. Schwartz I, Smith H (1983) Infinite subharmonic bifurcations in an SEIR epidemic model. J Math Biol 18:233–253MathSciNetCrossRefMATHGoogle Scholar
  26. Schwartz IB, Shaw LB, Cummings D, Billings L, McCrary M, Burke D (2005) Chaotic desynchronization of multi-strain diseases. Phys Rev E 72:066201CrossRefGoogle Scholar
  27. Shaw LB, Billings L, Schwartz IB (2007) Using dimension reduction to improve outbreak predictability of multistrain diseases. J Math Biol 55:1–19MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Society for Mathematical Biology (outside the USA) 2015

Authors and Affiliations

  • Eric Forgoston
    • 1
  • Leah B. Shaw
    • 2
  • Ira B. Schwartz
    • 3
  1. 1.Department of Mathematical SciencesMontclair State UniversityMontclairUSA
  2. 2.Department of Applied ScienceThe College of William & MaryWilliamsburgUSA
  3. 3.Nonlinear Systems Dynamics Section, Plasma Physics Division, Code 6792US Naval Research LaboratoryWashingtonUSA

Personalised recommendations