Bulletin of Mathematical Biology

, Volume 77, Issue 7, pp 1377–1400 | Cite as

Oscillations and Multiple Equilibria in Microvascular Blood Flow

  • Nathaniel J. Karst
  • Brian D. Storey
  • John B. Geddes
Original Article


We investigate the existence of oscillatory dynamics and multiple steady-state flow rates in a network with a simple topology and in vivo microvascular blood flow constitutive laws. Unlike many previous analytic studies, we employ the most biologically relevant models of the physical properties of whole blood. Through a combination of analytic and numeric techniques, we predict in a series of two-parameter bifurcation diagrams a range of dynamical behaviors, including multiple equilibria flow configurations, simple oscillations in volumetric flow rate, and multiple coexistent limit cycles at physically realizable parameters. We show that complexity in network topology is not necessary for complex behaviors to arise and that nonlinear rheology, in particular the plasma skimming effect, is sufficient to support oscillatory dynamics similar to those observed in vivo.


Microvascular blood flow Fluid dynamics Nonlinear dynamics Discontinuity-induced bifurcations 



This work was supported by the Babson Faculty Research Fund (N. J. K.) and the National Science Foundation under contract DMS-1211640 (B. D. S. and J. B. G.). We thank the two reviewers of our original submission for their careful attention and helpful suggestions.


  1. Arciero JC, Secomb TW (2011) Spontaneous oscillations in a model for active control of microvessel diameters. Math Med Biol. doi: 10.1093/imammb/dqr005
  2. di Bernardo M, Budd CJ, Champneys AR, Kowalczyk P, Nordmark AB, Tost GO, Piiroinen PT (2008) Bifurcations in nonsmooth dynamical systems. SIAM Rev 50(4):629–701. doi: 10.1137/050625060 zbMATHMathSciNetCrossRefGoogle Scholar
  3. Carr RT, Lacoin M (2000) Nonlinear dynamics of microvascular blood flow. Ann Biomed Eng 28(6):641–652. doi: 10.1114/1.1306346 CrossRefGoogle Scholar
  4. Carr RT, Geddes JB, Wu F (2005) Oscillations in a simple microvascular network. Ann Biomed Eng 33(6):764–771. doi: 10.1007/s10439-005-2345-2 CrossRefGoogle Scholar
  5. Casey R, Jong Hd, Gouzé JL (2005) Piecewise-linear models of genetic regulatory networks: equilibria and their stability. J Math Biol 52(1):27–56. doi: 10.1007/s00285-005-0338-2 CrossRefGoogle Scholar
  6. Chien S, Tvetenstrand CD, Epstein MA, Schmid-Schönbein GW (1985) Model studies on distributions of blood cells at microvascular bifurcations. Am J Physiol 248(4 Pt 2):H568–H576Google Scholar
  7. Coombes S, Doole SH (2010) Neuronal population dynamics with post inhibitory rebound: a reduction to piecewise linear discontinuous circle maps. 11(3):193–217. doi: 10.1080/02681119608806224
  8. Damiano ER (1998) The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries. Microvasc Res 55(1):77–91. doi: 10.1006/mvre.1997.2052 CrossRefGoogle Scholar
  9. Davis JM, Pozrikidis C (2010) Numerical simulation of unsteady blood flow through capillary networks. Bull Math Biol 73(8):1857–1880. doi: 10.1007/s11538-010-9595-3 MathSciNetCrossRefGoogle Scholar
  10. Davis JM, Pozrikidis C (2014) Self-sustained oscillations in blood flow through a honeycomb capillary network. Bull Math Biol 76(9):2217–2237. doi: 10.1007/s11538-014-0002-3 zbMATHMathSciNetCrossRefGoogle Scholar
  11. Dellimore JW, Dunlop MJ, Canham PB (1983) Ratio of cells and plasma in blood flowing past branches in small plastic channels. Am J Physiol 244(5):H635–H643Google Scholar
  12. Dercole F, Gragnani A, Rinaldi S (2007) Bifurcation analysis of piecewise smooth ecological models. Theor Popul Biol 72(2):197–213. doi: 10.1016/j.tpb.2007.06.003 zbMATHCrossRefGoogle Scholar
  13. Fåhræus R (1929) Suspension stability of blood. Physiol Rev 9:241–274Google Scholar
  14. Fåhræus R, Lindqvist T (1931) The viscosity of blood in narrow capillary tubes. J Physiol 96:562–568Google Scholar
  15. Fenton BM, Carr RT, Cokelet GR (1985) Nonuniform red cell distribution in 20 to 100 \(\mu \)m bifurcations. Microvasc Res 29(1):103–126. doi: 10.1016/0026-2862(85)90010-X CrossRefGoogle Scholar
  16. Forouzan O, Yang X, Sosa JM, Burns JM, Shevkoplyas SS (2012) Spontaneous oscillations of capillary blood flow in artificial microvascular networks. Microvasc Res 84(2):123–132. doi: 10.1016/j.mvr.2012.06.006 CrossRefGoogle Scholar
  17. Geddes JB, Carr RT, Karst N, Wu F (2007) The onset of oscillations in microvascular blood flow. SIAM J Appl Dyn Syst 6(4):694–727. doi: 10.1137/060670699 zbMATHMathSciNetCrossRefGoogle Scholar
  18. Geddes JB, Carr RT, Wu F, Lao Y, Maher M (2010) Blood flow in microvascular networks: a study in nonlinear biology. Chaos Interdiscip J Nonlinear Sci 20(4):045,123. doi: 10.1063/1.3530122 MathSciNetCrossRefGoogle Scholar
  19. Harris AG, Skalak TC (1993) Effects of leukocyte activation on capillary hemodynamics in skeletal muscle. Am J Physiol 264(3 Pt 2):H909–H916Google Scholar
  20. Janssen BJ, Oosting J, Slaaf DW, Persson PB, Struijker-Boudier HA (1995) Hemodynamic basis of oscillations in systemic arterial pressure in conscious rats. Am J Physiol 269(1 Pt 2):H62–H71Google Scholar
  21. Jeffrey MR, Dankowicz H (2014) Discontinuity-induced bifurcation cascades in flows and maps with application to models of the yeast cell cycle. Phys D Nonlinear Phenom 271:32–47. doi: 10.1016/j.physd.2013.12.011 zbMATHMathSciNetCrossRefGoogle Scholar
  22. Karst CM, Storey BD, Geddes JB (2013) Laminar flow of two miscible fluids in a simple network. Phys Fluids 25(3):033,601. doi: 10.1063/1.4794726 CrossRefGoogle Scholar
  23. Karst NJ, Storey BD, Geddes JB (2014) Spontaneous oscillations in simple fluid networks. SIAM J Appl Dyn Syst 13(1):157–180. doi: 10.1137/130926304 zbMATHMathSciNetCrossRefGoogle Scholar
  24. Kiani MF, Pries AR, Hsu LL, Sarelius IH, Cokelet GR (1994) Fluctuations in microvascular blood flow parameters caused by hemodynamic mechanisms. Am J Physiol 266(5 Pt 2):H1822–H1828Google Scholar
  25. Klitzman B, Johnson PC (1982) Capillary network geometry and red cell distribution in hamster cremaster muscle. Am J Physiol 242(2):H211–H219Google Scholar
  26. Krogh A (1921) Studies on the physiology of capillaries: II. The reactions to local stimuli of the blood-vessels in the skin and web of the frog. J Physiol (Lond) 55(5–6):412–422CrossRefGoogle Scholar
  27. Kuznetsov Y (2004) Elements of applied bifurcation theory. Springer, New York. doi: 10.1007/978-1-4757-3978-7 zbMATHCrossRefGoogle Scholar
  28. Parthimos D, Osterloh K, Pries AR, Griffith TM (2004) Deterministic nonlinear characteristics of in vivoblood flow velocity and arteriolar diameter fluctuations. Phys Med Biol 49(9):1789–1802. doi: 10.1088/0031-9155/49/9/014 CrossRefGoogle Scholar
  29. Pop SR, Richardson G, Waters SL, Jensen OE (2007) Shock formation and non-linear dispersion in a microvascular capillary network. Math Med Biol 24(4):379–400. doi: 10.1093/imammb/dqm007 zbMATHCrossRefGoogle Scholar
  30. Pries AR, Ley K, Claassen M, Gaehtgens P (1989) Red cell distribution at microvascular bifurcations. Microvasc Res 38(1):81–101. doi: 10.1016/0026-2862(89)90018-6 CrossRefGoogle Scholar
  31. Pries AR, Secomb TW, Gaehtgens P, Gross JF (1990) Blood flow in microvascular networks. Experiments and simulation. Circ Res 67(4):826–834CrossRefGoogle Scholar
  32. Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P (1994) Resistance to blood flow in microvessels in vivo. Circ Res 75(5):904–915. doi: 10.1161/01.RES.75.5.904 CrossRefGoogle Scholar
  33. Rodgers GP, Schechter AN, Noguchi CT, Klein HG, Niehuis QW, Bonner RF (1984) Periodic microcirculatory flow in patients with sickle cell disease. N Engl J Med 311:1534–1538. doi: 10.1056/NEJM198412133112403 CrossRefGoogle Scholar
  34. Secomb TW, Hsu R (1996) Motion of red blood cells in capillaries with variable cross-sections. J Biomech Eng 118(4):538–544. doi: 10.1115/1.2796041 CrossRefGoogle Scholar
  35. Shevkoplyas SS, Gifford SC, Yoshida T, Bitensky MW (2003) Prototype of an in vitro model of the microcirculation. Microvas Res 65(2):132–136. doi: 10.1016/S0026-2862(02)00034-1 CrossRefGoogle Scholar
  36. Simpson DJW, Kompala DS, Meiss JD (2009) Discontinuity induced bifurcations in a model of Saccharomyces cerevisiae. Math Biosci 218(1):40–49. doi: 10.1016/j.mbs.2008.12.005 zbMATHMathSciNetCrossRefGoogle Scholar
  37. Storey BD, Hellen DV, Karst NJ, Geddes JB (2015) Observations of spontaneous oscillations in simple two-fluid networks. Phys Rev E 91:023,004. doi: 10.1103/PhysRevE.91.023004 CrossRefGoogle Scholar
  38. Tawfik Y, Owens RG (2013) A mathematical and numerical investigation of the hemodynamical origins of oscillations in microvascular networks. Bull Math Biol 75(4):676–707. doi: 10.1007/s11538-013-9825-6 zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2015

Authors and Affiliations

  1. 1.Babson CollegeBabson ParkUSA
  2. 2.Olin CollegeNeedhamUSA

Personalised recommendations