Skip to main content
Log in

Analysis of Individual Cell Trajectories in Lattice-Gas Cellular Automaton Models for Migrating Cell Populations

Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Collective dynamics of migrating cell populations drive key processes in tissue formation and maintenance under normal and diseased conditions. Collective cell behavior at the tissue level is typically characterized by considering cell density patterns such as clusters and moving cell fronts. However, there are also important observables of collective dynamics related to individual cell behavior. In particular, individual cell trajectories are footprints of emergent behavior in populations of migrating cells. Lattice-gas cellular automata (LGCA) have proven successful to model and analyze collective behavior arising from interactions of migrating cells. There are well-established methods to analyze cell density patterns in LGCA models. Although LGCA dynamics are defined by cell-based rules, individual cells are not distinguished. Therefore, individual cell trajectories cannot be analyzed in LGCA so far. Here, we extend the classical LGCA framework to allow labeling and tracking of individual cells. We consider cell number conserving LGCA models of migrating cell populations where cell interactions are regulated by local cell density and derive stochastic differential equations approximating individual cell trajectories in LGCA. This result allows the prediction of complex individual cell trajectories emerging in LGCA models and is a basis for model–experiment comparisons at the individual cell level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alarcón T, Byrne HM, Maini PK (2003) A cellular automaton model for tumour growth in inhomogeneous environment. J Theor Biol 225(2):257–274

    Article  Google Scholar 

  • Arratia R (1983) The motion of a tagged particle in the simple symmetric exclusion system on z. Ann Prob 11:362–373

    Article  MathSciNet  MATH  Google Scholar 

  • Badoual M, Deroulers C, Aubert M, Grammaticos B (2010) Modelling intercellular communication and its effects on tumour invasion. Phys Biol 7(4):046013

    Article  Google Scholar 

  • Bergman AJ, Zygourakis K (1999) Migration of lymphocytes on fibronectin-coated surfaces: temporal evolution of migratory parameters. Biomaterials 20(23):2235–2244

    Article  Google Scholar 

  • Binder BJ, Landman KA, Newgreen DF, Simkin JE, Takahashi Y, Zhang D (2012) Spatial analysis of multi-species exclusion processes: application to neural crest cell migration in the embryonic gut. Bull Math Biol 74(2):474–490

    Article  MathSciNet  MATH  Google Scholar 

  • Bloomfield JM, Sherratt JA, Painter KJ, Landini G (2010) Cellular automata and integrodifferential equation models for cell renewal in mosaic tissues. J R Soc Interface 7(52):1525–1535

    Article  Google Scholar 

  • Böttger K, Hatzikirou H, Chauviere A, Deutsch A (2012) Investigation of the migration/proliferation dichotomy and its impact on avascular glioma invasion. Math Model Nat Phenom 7(1):105–135

    Article  MathSciNet  MATH  Google Scholar 

  • Böttger K, Hatzikirou H, Voss-Böhme A, Cavalcanti-Adam EA, Herrero MA, Deutsch A (2015) Emerging allee effect in tumor growth. Plos Comput Biol (in press)

  • Bryant DM, Mostov KE (2008) From cells to organs: building polarized tissue. Nature Rev Mol Cell Biol 9:887–901

    Article  Google Scholar 

  • Bussemaker HJ, Deutsch A, Geigant E (1997) Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion. Phys Rev Lett 78:5018–5021

    Article  Google Scholar 

  • Capasso V, Bakstein D (2012) An introduction to continuous-time stochastic processes. Birkhauser, Switzerland

    Book  MATH  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660

    Article  Google Scholar 

  • Chopard B, Ouared R, Deutsch A, Hatzikirou H, Wolf-Gladrow DA (2010) Lattice-gas cellular automaton models for biology: from fluids to cells. Acta Biotheor 58(4):329–340

    Article  Google Scholar 

  • Deutsch A, Dormann S (2005) Cellular automaton modeling of biological pattern formation. Birkhauser, Switzerland

    MATH  Google Scholar 

  • Dormann S, Deutsch A (2002) Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. Silico Biol 2(3):393–406

    Google Scholar 

  • Dormann S, Deutsch A, Lawniczak AT (2001) Fourier analysis of turing-like pattern formation in cellular automaton models. Future Gener Comp Sy 17(7):901–909

    Article  MATH  Google Scholar 

  • Drasdo D, Höhme S (2005) A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Phys Biol 2(3):133

    Article  Google Scholar 

  • Drasdo D, Kree R, McCaskill JS (1995) Monte carlo approach to tissue-cell populations. Phys Rev E 52(6):6635–6656

    Article  Google Scholar 

  • Ermentrout GB, Edelstein-Keshet L (1993) Cellular automata approaches to biological modeling. J Theor Biol 160(1):97–133

    Article  Google Scholar 

  • Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457

    Article  Google Scholar 

  • Galle J, Hoffmann M, Aust G (2009) From single cells to tissue architecturea bottom-up approach to modelling the spatio-temporal organisation of complex multi-cellular systems. J Math Biol 58:261–283

    Article  MathSciNet  MATH  Google Scholar 

  • Gardiner CW (1998) Handbook of stochastic methods. Springer, New York

    MATH  Google Scholar 

  • Glazier JA, Graner F (1993) Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E 47(3):2128–2154

    Article  Google Scholar 

  • Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended potts model. Phys Rev Lett 69:2013–2016

    Article  Google Scholar 

  • Hardy J, De Pazzis O, Pomeau Y (1976) Molecular dynamics of a classical lattice gas: transport properties and time correlation functions. Phys Rev A 13(5):1949–1962

    Article  Google Scholar 

  • Harris TE (1965) Diffusion with collisions between particles. J App Prob 2:323–338

    Article  Google Scholar 

  • Hatzikirou H, Basanta D, Simon M, Schaller K, Deutsch A (2006) Go or grow: the key to the emergence of invasion in tumour progression? Math Med Biol 29(1):49–65

    Article  MathSciNet  Google Scholar 

  • Hatzikirou H, Böttger K, Deutsch A (2015) Model-based comparison of cell density-dependent cell migration strategies. Math Model Nat Phenom 10(1):94–107

    Article  MathSciNet  Google Scholar 

  • Hatzikirou H, Brusch L, Deutsch A, Schaller C, Simon M (2006) Characterization of travelling front behaviour in a lattice gas cellular automaton model of glioma invasion. Math Mod Meth Appl Sci 15:1779–1794

    Article  Google Scholar 

  • Hatzikirou H, Brusch L, Schaller C, Simon M, Deutsch A (2010) Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion. Comput Math Appl 59(7):2326–2339

    Article  MathSciNet  MATH  Google Scholar 

  • Knapp DM, Tower TT, Tranquillo RT, Barocas VH (1999) Estimation of cell traction and migration in an isometric cell traction assay. AIChE J 45(12):2628–2640

    Article  Google Scholar 

  • Liggett TM (1985) Interacting particle systems. Springer, New York

    Book  MATH  Google Scholar 

  • Mente C, Prade I, Brusch L, Breier G, Deutsch A (2012) A lattice-gas cellular automaton model for in vitro sprouting angiogenesis. Acta Phys Pol B 5(1):99–115

    Google Scholar 

  • Merks RMH, Glazier JA (2005) A cell-centered approach to developmental biology. Phys A 352(1):113–130

    Article  Google Scholar 

  • Oelschläger K (1989) Many-particle systems and the continuum description of their dynamics

  • Pézeron G, Mourrain P, Courty S, Ghislain J, Becker TS, Rosa FM, David NB (2008) Live analysis of endodermal layer formation identifies random walk as a novel gastrulation movement. Curr Biol 18(4):276–281

    Article  Google Scholar 

  • Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9(4):265–273

    Article  Google Scholar 

  • Pomeau B, Hasslacher Y, Frisch U (1986) Lattice-gas automata for the Navier-stokes equation. Phys Rev Lett 56(14):1505–1509

    Article  Google Scholar 

  • Rejniak KA, Anderson ARA (2011) Hybrid models of tumor growth. Wiley Interdiscip Rev Syst Biol Med 3(1):115–125

    Article  Google Scholar 

  • Row RH, Maître J, Martin BL, Stockinger P, Heisenberg C, Kimelman D (2011) Completion of the epithelial to mesenchymal transition in zebrafish mesoderm requires spadetail. Dev Biol 354(1):102–110

    Article  Google Scholar 

  • Shreiber DI, Barocas VH, Tranquillo RT (2003) Temporal variations in cell migration and traction during fibroblast-mediated gel compaction. Biophys J 84(6):4102–4114

    Article  Google Scholar 

  • Simpson MJ, Landman KA, Hughes BD (2009) Pathlines in exclusion processes. Phys l Rev E 79(3):031920

    Article  Google Scholar 

  • Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904

    Article  Google Scholar 

  • Voss-Böhme A, Deutsch A (2010) The cellular basis of cell sorting kinetics. J Theor Biol 263(4):419–436

    Article  Google Scholar 

  • Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models: an introduction. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Elisabetta Ada Cavalcanti-Adam, Max Planck Institute for Intelligent Systems, and Katrin Böttger, TU Dresden, for useful discussions and for critically reading the manuscript. This work was financially supported by the Virtual Liver initiative (http://www.virtual-liver.de), funded by the German Ministry of Education and Research (BMBF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Mente.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mente, C., Voss-Böhme, A. & Deutsch, A. Analysis of Individual Cell Trajectories in Lattice-Gas Cellular Automaton Models for Migrating Cell Populations. Bull Math Biol 77, 660–697 (2015). https://doi.org/10.1007/s11538-015-0079-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-015-0079-3

Keywords

Navigation