Skip to main content
Log in

Mathematical Programming Models for Determining the Optimal Location of Beehives

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Farmers frequently decide where to locate the colonies of their domesticated eusocial bees, especially given the following mutually exclusive scenarios: (i) there are limited nectar and pollen sources within the vicinity of the apiary that cause competition among foragers; and (ii) there are fewer pollinators compared to the number of inflorescence that may lead to suboptimal pollination of crops. We hypothesize that optimally distributing the beehives in the apiary can help address the two scenarios stated above. In this paper, we develop quantitative models (specifically using linear programming) for addressing the two given scenarios. We formulate models involving the following factors: (i) fuzzy preference of the beekeeper; (ii) number of available colonies; (iii) unknown-but-bounded strength of colonies; (iv) probabilistic carrying capacity of the plant clusters; and (v) spatial orientation of the apiary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aizen, M. A., & Harder, L. D. (2009). The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol., 19, 915–918.

    Article  Google Scholar 

  • Aizen, M. A., Garibaldi, L. A., Cunningham, S. A., & Klein, A. M. (2008). Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol., 18, 1572–1575.

    Article  Google Scholar 

  • Allen-Wardell, G., et al. (1998). The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol., 12(1), 8–17.

    Article  Google Scholar 

  • Almazol, A. E., & Cervancia, C. R. (2010). Foraging behaviour of Xylocopa spp., Apis dorsata and Apis cerana on two mangrove species (Aegiceras floridum Roem & Shults and Scyphiphora hydrophyllacea Gaertn F.) in Pagbilao Mangrove, Quezon Province, Philippines. In Proceedings of the 10th Asian Apicultural Association Conference and Api Expo, Busan, South Korea (pp. 4–7).

    Google Scholar 

  • Association, B. B. (2006). Choosing an Apiary site. British Beekeepers Association Advisory Leaflet B11 (3rd ed.). Warwickshire: British Beekeepers Association.

    Google Scholar 

  • Association, B. B. (2013). Keeping bees—apiary set up. Available from http://barnsleybeekeepers.org.uk/apiary.html. Accessed June 24.

  • Awasthi, A., Chauhan, S. S., & Goyal, S. K. (2011). A multi-criteria decision making approach for location planning for urban distribution centers under uncertainty. Math. Comput. Model., 53, 98–109.

    Article  MathSciNet  MATH  Google Scholar 

  • Behrens, D., Forsgren, E., Fries, I., & Moritz, R. F. A. (2007). Infection of drone larvae (Apis mellifera) with American foulbrood. Apidologie, 38, 281–288.

    Article  Google Scholar 

  • Beil, M., Horn, H., & Schwabe, A. (2008). Analysis of pollen loads in a wild bee community (Hymenoptera: Apidae)—a method for elucidating habitat use and foraging distances. Apidologie, 39, 456–467.

    Article  Google Scholar 

  • Bisschop, J. (2012). AIMMS optimization modeling. Haarlem: Paragon Decision Technology.

    Google Scholar 

  • Bosaing, A. A. D., Rabajante, J. F., & De Lara, M. L. D. (2012). Assignment problems with weighted and nonweighted neighborhood constraints in 36, 44 and 63 tilings. Southeast. Asian J. Sci., 1(1), 55–75.

    Google Scholar 

  • Bradbear, N. (2009). Bees and their role in forest livelihoods: a guide to the services provided by bees and the sustainable harvesting, processing and marketing of their products. Rome: Food and Agriculture Organization of the United Nations.

  • Brittain, C., Williams, N., Kremen, C., & Klein, A. M. (2013). Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B, 280(1754), 20122767.

    Article  Google Scholar 

  • Brosi, B. J., Armsworth, P. R., & Daily, G. C. (2008). Optimal design of agricultural landscapes for pollination services. Conserv. Lett., 1(1), 27–36.

    Article  Google Scholar 

  • Cervancia, C. R., & Bergonia, E. A. (1991). Insect pollination of cucumber (Cucumis sativus L) in the Philippines. Acta Hortic., 228, 278–281.

    Article  Google Scholar 

  • Cervancia, C. R., & Forbes, M. F. (1993). Pollination of pechay (Brassica pekinensis Rupr) and radish (Raphanus sativus L). Philipp. J. Sci., 122(1), 129–132.

    Google Scholar 

  • Charikar, M., Khuller, S., Mount, D. M., & Narasimhan, G. (2001). Algorithms for facility location problems with outliers. In Proceedings of the 12th ACM–SIAM symposium on discrete algorithms, Washington DC (pp. 642–651).

    Google Scholar 

  • Church, R. L., & Revelle, C. S. (1974). The maximal covering location problem. Pap. Reg. Sci. Assoc., 32, 101–118.

    Article  Google Scholar 

  • Dat, L. Q., Yu, V. F., & Chou, S.-Y. (2012). An improved ranking method for fuzzy numbers based on the centroid-index. Int. J. Fuzzy Syst., 14(3), 413–419.

    MathSciNet  Google Scholar 

  • De la Rua, P., Jaffe, R., Dall’olio, R., Muñoz, I., & Serrano, J. (2009). Biodiversity, conservation and current threats to European honeybees. Apidologie, 40, 263–284.

    Article  Google Scholar 

  • Delaplane, K. S., van der Steen, J., & Guzman-Novoa, E. (2013). Standard methods for estimating strength parameters of Apis mellifera colonies. In V. Dietemann, J. D. Ellis, & P. Neumann (Eds.), The COLOSS BEEBOOK, Vol. I: Standard methods for Apis mellifera research. J. Apicultural Res., 52(1), 52.1.03.

    Google Scholar 

  • Deyto, R. C., & Cervancia, C. R. (2009). Floral biology and pollination of ampalaya Momordica charantia L. Philipp. Agric. Sci., 92(1), 8–18.

    Google Scholar 

  • Di Prisco, G., Cavaliere, V., Annoscia, D., Varricchio, P., Caprio, E., Nazzi, F., Gargiulo, G., & Pennacchio, F. (2013). Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. PNAS, 110(46), 18466–18471.

    Article  Google Scholar 

  • Duffield, G. E., Gibson, R. C., Gilhooly, P. M., Hesse, A. J., Inkley, C. R., Gilbert, F. S., & Barnard, C. J. (1993). Choice of flowers by foraging honey bees (Apis mellifera): possible morphological cues. Ecol. Entomol., 18, 191–197.

    Article  Google Scholar 

  • Esteves, R. J. P., Villadelrey, M. C., & Rabajante, J. F. (2010). Determining the optimal distribution of bee colony locations to avoid overpopulation using mixed integer programming. J. Nat. Stud., 9(1), 79–82.

    Google Scholar 

  • Fajardo, A. C., Medina, J. R., Opina, O. S., & Cervancia, C. R. (2008). Insect pollinators and floral visitors of mango, Mangifera indica var. “carabao”. Philipp. Agric. Sci., 91(4), 372–382.

    Google Scholar 

  • Farahani, R. Z., & Hekmatfar, M. (2009). Facility location: concepts, models, algorithms and case studies. Berlin: Springer.

    Book  Google Scholar 

  • Free, J. (1993). Insect pollination of crops. London/New York: Academic Press.

    Google Scholar 

  • Gallai, N., Salles, J. M., Settele, J., & Vaissiere, B. E. (2009). Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ., 68, 810–821.

    Article  Google Scholar 

  • Genersch, E., von der Ohe, W., Kaatz, H., Schroeder, A., Otten, C., Buchler, R., Berg, S., Ritter, W., Muhlen, W., Gisder, S., Meixner, M., Liebig, G., & Rosenkranz, P. (2010). The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie, 41, 332–352.

    Article  Google Scholar 

  • Ghazoul, J. (2005). Buzziness as usual? Questioning the global pollination crisis. Trends Ecol. Evol., 20(7), 367–373.

    Article  Google Scholar 

  • Guan, Z., Jin, Z., & Zou, B. (2007). A multi-objective mixed-integer stochastic programming model for the vendor selection problem under multi-product purchases. Inf. Manag. Sci., 18(3), 241–252.

    MathSciNet  MATH  Google Scholar 

  • Guzman-Novoa, E., Eccles, L., Calvete, Y., McGowan, J., Kelly, P. G., & Correa-Benitez, A. (2010). Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada. Apidologie, 41, 443–450.

    Article  Google Scholar 

  • Herrera, F., & Verdegay, J. L. (1995). Three models of fuzzy integer linear programming. Eur. J. Oper. Res., 83, 581–593.

    Article  MATH  Google Scholar 

  • Jadczak, A. (1994). Placement of honey bee colonies used for blueberry pollination. Maine: University of Maine.

  • Kevan, P. G. (1999). Pollinators as bioindicators of the state of the environment: species, activity and diversity. Agric. Ecosyst. Environ., 74, 373–393.

    Article  Google Scholar 

  • Klein, A. M., Steffan-Dewenter, I., & Tscharntke, T. (2002). Bee pollination and fruit set of Coffea arabica and C. canephora (Rubiaceae). Am. J. Bot., 90(1), 153–157.

    Article  Google Scholar 

  • Klein, A.-M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. Lond. B, Biol. Sci., 274(1608), 303–313.

    Article  Google Scholar 

  • Kuhn-Neto, B., Contrera, F. A. L., Castro, M. S., & Nieh, J. C. (2009). Long distance foraging and recruitment by a stingless bee Melipona mandacaia. Apidologie, 40, 472–480.

    Article  Google Scholar 

  • Le Conte, Y., Ellis, M., & Ritter, W. (2010). Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie, 41, 353–363.

    Article  Google Scholar 

  • Li, Y. P., Huang, G. H., Huang, Y. F., & Zhou, H. D. (2009). A multistage fuzzy-stochastic programming model for supporting sustainable water-resources allocation and management. Environ. Model. Softw., 24, 786–797.

    Article  Google Scholar 

  • Liu, B. (2009). Theory and practice of uncertain programming (2nd ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Lowore, J., & Bradbear, N. (2012). Extensive beekeeping. Bees Dev. J., 103, 3–5.

    Google Scholar 

  • Mader, E., Spivak, M., & Evans, E. (2010). Managing alternative pollinators: a handbook for beekeepers, growers and conservationists (SARE Handbook 11). Maryland: Sustainable Agriculture Research and Education and New York: Natural Resource, Agriculture, and Engineering Service.

    Google Scholar 

  • Maini, S., Medrzycki, P., & Porrini, C. (2010). The puzzle of honey bee losses: a brief review. Bull. Insectol., 63(1), 153–160.

    Google Scholar 

  • Manila-Fajardo, A. C. (2011). Pollination biology of coffea liberica W. Bull ex Hiern var. liberica in Lipa City, Philippines. PhD thesis, University of the Philippines Los Baños.

  • Megiddo, N., Zemel, E., & Hakimi, S. L. (1983). The maximum coverage location problem. SIAM J. Algebr. Discrete Methods, 4(2), 253–261.

    Article  MathSciNet  MATH  Google Scholar 

  • Menz, M. H. M., Philips, R. D., Winfree, R., Kremen, C., Aizen, M. A., Johnson, S. D., & Dixon, K. W. (2011). Reconnecting plants and pollinators: challenges in the restoration of pollination mutualisms. Trends Plant Sci., 16(1), 4–12.

    Article  Google Scholar 

  • Morse, R. A., & Calderone, N. W. (2000). The value of honey bees as pollinators of US crops in 2000. In Bee culture magazine, Ohio: A.I. Root Company.

    Google Scholar 

  • Murray, T. E., Kuhlmann, M., & Potts, S. G. (2009). Conservation ecology of bees: populations, species and communities. Apidologie, 40, 211–236.

    Article  Google Scholar 

  • Oldroyd, B. P., & Nanork, P. (2009). Conservation of Asian honey bees. Apidologie, 40, 296–312.

    Article  Google Scholar 

  • Park, M. G., Orr, M. C., & Danforth, B. N. (2010). The role of native bees in apple pollination. New York Fruit Q., 18(1), 21–25.

    Google Scholar 

  • Pettis, J. S., Lichtenberg, E. M., Andree, M., Stitzinger, J., Rose, R., & van Engelsdorp, D. (2013). Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen nosema ceranae. PLoS ONE, 8(7), e70182.

    Article  Google Scholar 

  • Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G., & Willmer, P. (2003). Linking bees and flowers: how do floral communities structure pollinator communities? Ecology, 84, 2628–2642.

    Article  Google Scholar 

  • Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol., 25(6), 345–353.

    Article  Google Scholar 

  • Raju, A. J. S., & Karyamsetty, H. J. (2008). Reproductive ecology of mangrove trees Ceriops decandra (Griff.) Ding Hou and Ceriops tagal (Perr.) C.B. Robinson (Rhizophoraceae). Acta Bot. Croat., 67(2), 201–208.

    Google Scholar 

  • Ramalho, M., Kleinert-Giovannini, A., & Imperatriz-Fonseca, V. L. (1989). Utilization of floral resources by species of Melipona (Apidae, Meliponinae): floral preferences. Apidologie, 20, 185–195.

    Article  Google Scholar 

  • Roubik, D. W., Yanega, D., Aluja, S. M., Buchmann, S. L., & Inouye, D. W. (1995). On optimal nectar foraging by some tropical bees (Hymenoptera: Apidae). Apidologie, 26, 197–211.

    Article  Google Scholar 

  • Sagili, R. R., & Burgett, D. M. (2011). Evaluating honey bee colonies for pollination: a guide for commercial growers and beekeepers. PNW 623. Pacific Northwest Extension Publication.

  • Slaa, E. J., Tack, A. J. M., & Sommeijer, M. J. (2003). The effect of intrinsic and extrinsic factors on flower constancy in stingless bees. Apidologie, 34, 457–468.

    Article  Google Scholar 

  • Slaa, E. J., Chaves, L. A. S., Malagodi-Braga, K. S., & Hofstede, F. E. (2006). Stingless bees in applied pollination: practice and perspectives. Apidologie, 37, 293–315.

    Article  Google Scholar 

  • Stephens, D. W., & Stevens, J. R. (2001). A simple spatially explicit ideal-free distribution: a model and an experiment. Behav. Ecol. Sociobiol., 49, 220–234.

    Article  Google Scholar 

  • Taha, H. A. (2010). Operations research: an introduction (9th ed.). New Jersey: Prentice Hall.

    MATH  Google Scholar 

  • Tambaoan, R. S., Rabajante, J. F., Esteves, R. J. P., & Villadelrey, M. C. (2011). Prediction of migration path of a colony of bounded-rational species foraging on patchily distributed resources. Adv. Stud. Biol., 3(7), 333–345.

    Google Scholar 

  • Thode, H. C. (2002). Testing for normality. New York: Marcel Dekker/CRC Press.

    Book  MATH  Google Scholar 

  • Triantaphyllou, E., Shu, B., Nieto Sanchez, S., & Ray, T. (1998). Multi-criteria decision making: an operations research approach. In J. G. Webster (Ed.), Encyclopedia of electrical and electronics engineering (pp. 175–186). New York: Wiley.

    Google Scholar 

  • Tubay, J. M., Panopio, R. G., & Mendoza, G. A. (2010). A fuzzy multiple objective linear programming model for the optimal allocation of feedstock for bioethanol production. UPLB J., 8, 159–179.

    Google Scholar 

  • van Engelsdorp, D., & Meixner, M. D. (2010). A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol., 103, S80–S95.

    Article  Google Scholar 

  • van Engelsdorp, D., Hayes, J. Jr., Underwood, R. M., & Pettis, J. (2008). A survey of honey bee colony losses in the US, Fall 2007 to Spring 2008. PLoS ONE, 3(12), e4071.

    Article  Google Scholar 

  • van Nieuwstadt, M. G. L., & Ruano Iraheta, C. E. (1996). Relation between size and foraging range in stingless bees (Apidae, Meliponinae). Apidologie, 27, 219–228.

    Article  Google Scholar 

  • Wang, Y.-M., Yanga, J.-B., Xu, D.-L., & Chin, K.-S. (2006). On the centroids of fuzzy numbers. Fuzzy Sets Syst., 157, 919–926.

    Article  MathSciNet  MATH  Google Scholar 

  • Williams, G. R., Tarpy, D. R., van Engelsdorp, D., Chauzat, M.-P., Cox-Foster, D. L., Delaplane, K. S., Neumann, P., Pettis, J. S., Rogers, R. E. L., & Shutler, D. (2010). Colony collapse disorder in context. BioEssays, 32(10), 845–846.

    Article  Google Scholar 

  • Woodcock, T. S. (2012). Pollination in the agricultural landscape: best management practices for crop pollination. Ontario: Canadian Pollination Initiative (NSERC-CANPOLIN), University of Guelph.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jomar F. Rabajante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavina, M.K.A., Rabajante, J.F. & Cervancia, C.R. Mathematical Programming Models for Determining the Optimal Location of Beehives. Bull Math Biol 76, 997–1016 (2014). https://doi.org/10.1007/s11538-014-9943-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-9943-9

Keywords

Navigation