Skip to main content


Log in

A Mathematical Model of the Human Metabolic System and Metabolic Flexibility

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript


In healthy subjects some tissues in the human body display metabolic flexibility, by this we mean the ability for the tissue to switch its fuel source between predominantly carbohydrates in the postprandial state and predominantly fats in the fasted state. Many of the pathways involved with human metabolism are controlled by insulin and insulin-resistant states such as obesity and type-2 diabetes are characterised by a loss or impairment of metabolic flexibility. In this paper we derive a system of 12 first-order coupled differential equations that describe the transport between and storage in different tissues of the human body. We find steady state solutions to these equations and use these results to nondimensionalise the model. We then solve the model numerically to simulate a healthy balanced meal and a high fat meal and we discuss and compare these results. Our numerical results show good agreement with experimental data where we have data available to us and the results show behaviour that agrees with intuition where we currently have no data with which to compare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others


  • Acheson KJ, Schutz Y, Bessard T, Anantharaman K, Flatt J, Jéquier E (1988) Glycogen storage capacity and de novo lipogenesis during massive overfeeding in man. Am J Clin Nutr 48:240–247

    Google Scholar 

  • Adiels M, Westerbacka J, Soro-Paavonen A, Häkkinen AM, Vehkavaara S, Caslake MJ, Packard C, Olofsson SO, Yki-Järvinen H, Taskinen MR, Borén J (2007) Acute suppression of VLDL1 secretion rate by insulin is associated with hepatic fat content and insulin resistance. Diabetologia 50:2356–2365

    Article  Google Scholar 

  • Andersen V, Sonne J, Sletting S, Prip A (2000) The volume of the liver in patients correlates to body weight and alcohol consumption. Alcohol Alcohol 35:531–532

    Article  Google Scholar 

  • August E, Parker KH, Barahona M (2007) A dynamical model of lipoprotein metabolism. Bull Math Biol 69:1233–1254

    Article  MATH  Google Scholar 

  • Bennet DL, Gourley SA (2004) Asymptotic properties of a delay differential equation model for the interaction of glucose with plasma and interstitial insulin. Appl Math Comput 151:189–207

    Article  MathSciNet  Google Scholar 

  • Bickerton AST, Roberts R, Fielding BA, Tornqvist H, Blaak AA, Wagenmakers AGM, Gilbert M, Humphreys SM, Karpe F, Frayn KN (2008) Adipose tissue fatty acid metabolism in insulin-resistant men. Diabetologia 51:1466–1474

    Article  Google Scholar 

  • Blakemore C, Jennett S (2001) The oxford companion to the body: glycogen. OUP, Oxford

    Book  Google Scholar 

  • Bock G, Chittilapilly E, Basu R, Toffolo G, Cobelli C, Chandramouli V, Landau BR, Rizza RA (2007) Contribution of hepatic and extrahepatic insulin resistance to the pathogenesis of impaired fasting glucose. Diabetes 56:1703–1711

    Article  Google Scholar 

  • Chew YH, Shia YL, Lee CT, Majid FAA, Chua LS, Sarmidi MR, Aziz RA (2009) Modelling of glucose regulation and insulin-signaling pathways. Mole Cell Endocrinol 303:13–24

    Article  Google Scholar 

  • Cobelli C, Federspil G, Pacini G, Salvan A, Scandellari C (1982) An intergrated mathematical model of the dynamics of blood glucose and its hormonal control. Math Biosci 58:27–60

    Article  MATH  Google Scholar 

  • den Boer MAM, Berbée JFP, Reiss P, van der Valk M, Voshol PJ, Kuipers F, Havekes LM, Rensen PCN, Romijn JA (2006) Ritover impairs lipoprotein lipase-mediated lipolysis and decreases uptake of fatty acids in adipose tissue. Arterioscler Thromb Vasc Biol 26:124–129

    Article  Google Scholar 

  • De Gaetano A, Arino O (2000) Mathematical modelling of the intravenous glucose tolerance test. J Math Biol 40:136–168

    Article  MathSciNet  MATH  Google Scholar 

  • Engelborghs K, Lemaire V, Bélair J, Roose D (2001) Numerical bifurcation analysis of delay differential equations arising from physiological modelling. J Math Biol 42:361–385

    Article  MathSciNet  MATH  Google Scholar 

  • Flatt JP (2004) Carbohydrate-fat interactions and obesity examined by a two-compartment computer model. Obes Res 12:2013–2022

    Article  Google Scholar 

  • Frayn KN (2003) Metabolic regulation: a human perspective. Blackwell Publishing, NJ

  • Hall KD (2006) Computational model of in vivo human energy metabolism during semistarvation and re-feeding. Am J Physiol 291:E23–37

    Google Scholar 

  • Hall KD, Bain HL, Chow CC (2007) How adaptations of substrate utilization regulate body composition. Int J Obes 31:1378–1383

    Article  Google Scholar 

  • Hall KD (2010a) Mechanisms of metabolic fuel selection: modelling human metabolism and body weight change. IEEE Eng Med Biol Mag 29(1):36–41

    Article  Google Scholar 

  • Hall KD (2010b) Predicting metabolic adaptation, body weight change and energy intake in humans. Am J Physiol 298(3):E449–466

    Google Scholar 

  • Hallgreen CE (2009) The interplay between glucose and fat metabolism: a biosimulation approach. PhD Thesis, Technical University of Denmark, Copenhagen

  • Harrison DE, Christie MR, Gray DWR (1985) Properties of isolated human islets of Langerhans: insulin secretion, glucose oxidation and protein phosphorylation. Diabetologia 28:99–103

    Google Scholar 

  • Iozzo P, Hallsten K, Oikonen V, Virtunen KA, Kemppainen J, Solin O, Ferrannini E, Knuuti J, Nuutila P (2003) Insulin-mediated hepatic glucose uptake is impaired in type 2 diabetes: evidence for a relationship with glycemic control. J Clin Endocrinol Metab 88:2055–2060

    Article  Google Scholar 

  • Jordan PN, Hall KD (2008) Dynamic coordination of macronutrient balance during infant growth: insights from a mathematical model. Am J Clin Nutr 87:692–703

    Google Scholar 

  • Kelley DE, Mandarino LJ (2000) Fuel selection in human skeletal muscle in insulin resistance. Diabetes 49:677–683

    Article  Google Scholar 

  • Kelley DE (2005) Skeletal muscle fat oxidation: timing and flexibility are everything. J Clin Investig 115:1699–1702

    Article  Google Scholar 

  • Kim J, Saidel GM, Cabrera ME (2007) Multi-scale computational model of fuel homeostasis during exercise: effect of hormonal control. Ann Biomed Eng 35:68–90

    Article  Google Scholar 

  • Klinke DJ (2008) Integrating epidemiological data into a mechanistic model of type 2 diabetes: validating the prevalence of virtual patients. Ann Biomed Eng 36:321–334

    Article  Google Scholar 

  • Kotronen A, Juurinen L, Tiikainen M, Vehkavaara S, Yki-Jrvinen H (2008) Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology 135:122–130

    Article  Google Scholar 

  • Lambeth MJ, Kushmerick MJ (2002) A computational model for glycogenolysis in skeletal muscle. Ann Biomed Eng 30:808–827

    Article  Google Scholar 

  • Li J, Kuang Y, Mason CC (2006) Modelling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays. J Theor Biol 242:722–735

    Article  MathSciNet  Google Scholar 

  • Li Y, Soloman TP, Haus JM, Saidel GM, Cabrera ME, Kirwan JP (2010) Computational model of cellular metabolic dynamics: effect of insulin on glucose disposal in human skeletal muscle. Am J Physiol Endocrinol Metab 298:E1198–1209

    Article  Google Scholar 

  • Meyer C, Dostou JM, Welle SL, Gerich JE (2002) Role of human liver, kidney and skeletal muscle in the postprandial glucose homeostasis. J Physiol Endocrinal Metab 282:E419–E427

    Article  Google Scholar 

  • Mizuno A, Arai H, Fukaya M, Sato M, Hisami YO, Takeda E (2007) T Early-phase insulin secretion is disturbed in obese subjects with glucose intolerance. Metab Clin Exp 56:856–862

  • Olefsky JM (1981) Insulin resistance and insulin action: an in vitro and in vivo perspective. Diabetes 30:148–162

    Article  Google Scholar 

  • Pearson T, Wattis JAD, O’Malley BJ, Pickersgill L, Blackburn H, Jackson KG, Byrne HM (2009) Mathematical modelling of competitive LDL/VLDL binding and uptake by hepatocytes. J Math Biol 58:845–880

    Article  MathSciNet  MATH  Google Scholar 

  • Perival V, Chow CC, Bergman RN, Ricks M, Vega GL, Summer AE (2008) Evaluation of quantitative models of the effect of insulin on lipolysis and glucose disposal. Am J Physiol Regul Integr Comp Physiol 295:R1089–1096

    Article  Google Scholar 

  • Peterson KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, Cline GW, Befroy D, Zemany L, Kahn BB, Papademetris X, Rothman DL, Shulman GI (2007) The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci 104:12587–12594

    Article  Google Scholar 

  • Phielix E, Mensink M (2008) Type 2 diabetes mellitus and skeletal muscle metabolic function. Physiol Behav 94:252–258

    Article  Google Scholar 

  • Prager R, Wallace P, Olefsky JM (1986) In vivo kinetics of insulin action on peripheral glucose disposal and hepatic glucose output in normal and obese subjects. J Clin Investig 78:472–481

    Article  Google Scholar 

  • Pratt A, Wattis JAD, Salter AM (2014) Mathematical modelling of hepatic lipid metabolism.

  • Rijkelijkhuizen JM, Doesburg T, Girman CJ, Mari A, Rhodes T, Gastaldelli A, Nijpels G, Dekker JM (2009) Hepatic fat is not associated with \(\beta \)-cell function or postprandial free fatty acid response. Metab Clin Exp 58:196–203

    Article  Google Scholar 

  • Sedaghat AR, Sherman A, Quon MJ (2002) A mathematical model of metabolic insulin signaling pathways. Am J Physiol Endocrinal Metab 283:E1084–E1101

    Article  Google Scholar 

  • Song B, Thomas DM (2007) Dynamics of starvation in humans. J Math Biol 54:27–43

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor R, Magnusson I, Rothman DL, Cline GW, Caumo A, Cobelli C (1996) Direct assessment of liver glycogen storage by 13C nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal subjects. J Clin Invest 97:126–132

    Article  Google Scholar 

  • Tindall MJ, Wattis JAD, O’Malley BJ, Pickersgill L, Jackson KG (2009) A continuum receptor model of hepatic lipoprotien metabolism. J Theor Biol 257:371–384

    Article  Google Scholar 

  • Tolic IM, Mosekilde E, Sturis J (2000) Modelling the insulin-glucose feedback system: the significance of pulsatile insulin secretion. J Theor Biol 207:361–375

    Article  Google Scholar 

  • Vicini P, Kushmerick MJ (2000) Cellular energetics analysis by a mathematical model of energy balance: estimation of parameters in human skeletal muscle. Am J Physiol Cell Physiol 279:213–224

    Google Scholar 

  • Wattis JAD, O’Malley BJ, Blackburn H, Pickersgill L, Panovska J, Byrne HM, Jackson KG (2008) Mathematical model for low density lipoprotein (LDL) endocytosis by hepatocytes. Bull Math Biol 70:2303–2333

    Article  MathSciNet  MATH  Google Scholar 

Download references


TP acknowledges support from BBSRC and Unilever Corporate Research. The authors are grateful to the referees for their helpful comments on earlier versions of the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. A. D. Wattis.

Additional information

T. Pearson: (sadly died in March 2013, following a long illness).


Appendix 1: Properties of Solutions of the Governing Equations

1.1 Uniqueness of Steady State

In this appendix we will prove the uniqueness of our steady states. We begin by writing down which variables each steady state is a function of (except \(I^*\)),

$$\begin{aligned} G_b^*&= \frac{\beta _G }{(1 + k_{GL}{I^*}^2)(S_G + k_G(1 + k_{GI}I^*) + k_LI^* + k_{AL}I^*)} = f_1(I^*), \nonumber \\ T_b^*&= \frac{\beta _T}{(1+k_{TL}I^*)(k_{TA}(1+k_{AI}I^*)+k_T)} = f_2(I^*), \nonumber \\ A_l^*&= \frac{k_{AL}I^*G^*_b+k_{BL}A^*_b}{\frac{S_L}{1+k_{AS}I^*} + k_{LB} + k_{TH}I^*} = f_3(I^*, G_b^*, A_b^*), \nonumber \\ A_b^*&= \frac{\beta _A}{(1+k_{AA}{I^*}^2)(k_A + k_{BL})} +\frac{k_{LB}A^*_L}{k_A + k_{BL}} = f_4(I^*, A_l^*), \nonumber \\ G_m^*&= \frac{\beta _G k_G(1 + k_{GI}I^*) }{M_GP^*I^*(S_G + k_G(1 + k_{GI}I^*) + k_LI^* + k_{AL}I^*)} = f_5(I^*, P^*), \nonumber \\ A_m^*&= \frac{1}{M_AP^*} \left( \frac{\beta _Tk_T}{(1+k_{TL}I^*) (k_{TA}(1+k_{AI}I^*)+k_T)} \right) = f_6(I^*, P^*), \nonumber \\ Y_m^*&= k_Y G^*_m \left( \frac{1+k_{YI}I^*}{1+k_{YP}P^*} \right) \left( \frac{1+k_{CI}I^*}{k_{CP}P^*} \right) = f_7(I^*, P^*, G_m^*), \nonumber \\ T_m^*&= k_X A^*_m \left( \frac{1+k_{XI}I^*}{1+k_{XP}P^*} \right) \left( \frac{1+k_{DI}I^*}{k_{DP}P^*} \right) = f_8(I^*, P^*, A_m^*), \nonumber \\ P^*&= \frac{\mu - \mu _c}{\lambda _P} = f_9(I^*). \end{aligned}$$

The expressions for \(A_b^ =f_4\) and \(A_l^*=f_3\) form a linear system for \(A_b^*\) and \(A_l^*\) which has a unique solution for each quantity in terms of \(I^*\) and \(G_b^*\), and hence the solutions can be written explicitly in terms of \(I^*\) using \(G_b^*=f_1(I^*)\). Now we substitute the expression for \(P^*=f_9\) into the equations for \(G_m^*=f_5\), \(A_m^*=f_6\), \(Y_m^*=f_7\), etc., to obtain a simpler system given by

$$\begin{aligned}&G_b^* = f_1(I^*), \quad T_b^* = f_2(I^*), \quad A_l^* = \widetilde{f}_3(I^*), \quad A_b^* = \widetilde{f}_4(I^*), \quad G_m^* = \widetilde{f}_5(I^*), \nonumber \\&A_m^* = \widetilde{f}_6(I^*), \quad Y_m^* = \widetilde{f}_7(I^*, G_m^*), \quad T_m^* = \widetilde{f}_8(I^*, A_m^*), \quad P^* = f_9(I^*). \end{aligned}$$

Thus, all quantities can now be written as a function of \(I^*\), only \(T_m^*\) still depends on other quantities, and these can be eliminated using other expressions in (33), for example, \(T_m^*=\tilde{f}_8(I^*,\tilde{f}_6(I^*))\).

Considering the steady-state equation for insulin, we write down an expression for \(I^*\),

$$\begin{aligned} I^* = \frac{ k_1 + k_2 \mathrm{erf}((G_b-v)/c) + k_{IA}A_b^*}{\lambda _I}. \end{aligned}$$

We now examine the steady-state values for \(G_b^*\) and \(A_b^*\) given in Table 2 and note that \(G_b\) terms contribute more significantly to the steady state than the \(A_b^*\) terms. Hence we temporarily neglect the \(A_b^*\) term. Under this assumption we substitute in the expression for \(G_b^*\) to find

$$\begin{aligned} \lambda _I I^*&= k_1 + k_2 \mathrm{erf}\left( \frac{ f_1(I^*) -v}{c} \right) . \end{aligned}$$

The left-hand side of Eq. 35 is an increasing function of \(I^*\) for \(I^* > 0\), satisfying rhs \(=0\) when \(I^*=0\), and the right-hand side is a decreasing function of \(I^*\) for \(I^* > 0\), with rhs \(>0\) at \(I^*=0\); therefore, there is a unique solution for \(I^*\).

Given that \(I^*\) has a unique solution, we can now follow the chain of reasoning

$$\begin{aligned} I^* \hbox { has unique steady-state}&\Rightarrow G_b^*, T_b^*, P^* \hbox { have unique steady-states}, \\ I^* \hbox { and } P^* \hbox { have unique steady-states }&\Rightarrow G_m^* \hbox { and } A_m^* \hbox { have unique steady-states}, \\ I^* \hbox { and } G_b^* \hbox { have unique steady-states }&\Rightarrow A_l* \hbox { and } A_b^* \hbox { have unique steady-state}, \\ I^* , P^* \hbox { and } G_m^* \hbox { have unique steady-states }&\Rightarrow Y_m^* \hbox { has unique steady-state}, \\ I^* , P^* \hbox { and } A_m^* \hbox { have unique steady-states }&\Rightarrow T_m^* \hbox { has unique}. \end{aligned}$$

Hence the system as whole has a unique steady-state solution.

Reinstating the \(A_b^*\) term theoretically could make the rhs of (35) nonmonotone, and so there could be multiple steady-states, however, for the physically realistic parameter values of interest to us, this does not occur.

1.2 Positivity of Solutions

Since all of the governing Eqs. (1)–(4), (7)–(14) have the form \(\mathrm{d}X/\mathrm{d}t = A - B X\) with \(A>0\), we can be sure that if \(X=0\) ever occurs, then \(X\) would increase, and so, provided we start with positive initial data, the concentrations will remain positive for all time.

Since the nonlinearities in the model are all analytic and have at most linear growth, the standard theory of ordinary differential equations implies uniqueness for the initial value problem.

Appendix 2: NonDimensionalisation

Before we attempt to solve the system numerically, we nondimensionalise it so that we may reduce the number of parameters in the model. This process also allows for simpler numerical simulations. We rescale each variable by its steady-state value, except for \(Y_L\) which we rescale by \(Y_{max}\), and \(T_L\) which we rescale by a typical healthy liver fat concentration, denoted by \(T_L^H\). This means that we are now concerned with the following nondimensional variables

$$\begin{aligned}&\widehat{Y}_L = \frac{Y_L}{Y_{max}} , \quad \widehat{A}_L = \frac{A_L}{A_L^*} , \quad \widehat{T}_L = \frac{T_L}{T_L^H} , \quad \widehat{G}_b = \frac{G_b}{G_b^*} ,\\&\widehat{A}_b = \frac{A_b}{A_b^*} , \quad \widehat{T}_b = \frac{T_b}{T_b^*} , \quad \widehat{I} = \frac{I}{I^*} , \quad \widehat{G}_m = \frac{G_m}{G_m^*} , \quad \widehat{Y}_m = \frac{Y_m}{Y_m^*} ,\\&\widehat{Y}_m = \frac{Y_m}{Y_m^*} , \quad \widehat{A}_m = \frac{A_m}{A_m^*} , \quad \widehat{T}_m = \frac{T_m}{T^*_m} , \quad \widehat{P} = \frac{P}{P_b^*}, \quad t = \frac{V_b G_B^*}{\beta _G} \,\widehat{t} . \end{aligned}$$

The forcing functions are nondimensionalised by \(F_G(t) = \beta _G \widehat{F}_G(\widehat{t})\) and \(F_T(t)=\beta _T \widehat{F}_T(\widehat{t})\), where the nondimensional forcing functions are given by

$$\begin{aligned} \widehat{F}_G(\widehat{t}) = \frac{\widehat{k}_{FG}\widehat{t}}{\widehat{\tau }_G} e^{-\widehat{t}^{\,2} / 2\widehat{\tau }^2_G},&\quad&\widehat{k}_{FG} = \frac{\theta _G}{B_G\beta _G}, \quad \widehat{\tau }_G = \frac{B_G\beta _G}{V_b G_B^*},\end{aligned}$$
$$\begin{aligned} \widehat{F}_T(\widehat{t}) = \frac{\widehat{k}_{FT}\widehat{t}}{\widehat{\tau }_T} e^{-\widehat{t}^{\,2} / 2\widehat{\tau }^2_T},&\quad&\widehat{k}_{FT} = \frac{\theta _T}{B_T\beta _T}, \quad \widehat{\tau }_T = \frac{B_T\beta _G}{V_b G_B^*}, \end{aligned}$$

In terms of their nondimensional variables, the functions \(f_1\), \(f_2\) and \(f_3\) are given by

$$\begin{aligned} f_1(\widehat{Y}_L)&= \frac{\widehat{Y}_L}{Y_c+\widehat{Y}_L}, \qquad Y_c = \frac{Y_0}{Y_{max}}, \nonumber \\ f_2(\widehat{Y}_L)&= \frac{1- \widehat{Y}_L}{Y_c+ 1 - \widehat{Y}_L}, \quad Y_c = \frac{Y_0}{Y_{max}},\nonumber \\ f_3(\widehat{T}_L)&= \frac{\widehat{T}_L}{T_c+\widehat{T}_L}, \quad T_c = \frac{T_0}{T_L^H}. \end{aligned}$$

Using the above rescalings we obtain the following system of nondimensional equations where we have dropped the hats for convenience

$$\begin{aligned} \eta \frac{dY_L}{dt}&= \psi _L \left( \beta _1IG_b f_2(Y_L) + \frac{f_1(Y_L)}{1+\delta _GI^2} \right) , \end{aligned}$$
$$\begin{aligned} \eta \frac{dA_L}{dt}&= \epsilon _{ga} \theta _1 IG_b -\left( \frac{\theta _3}{1+\delta _HI}+\theta _2+\theta _4I \right) A_L +\frac{\theta _5}{\epsilon _{lb}} A_b, \end{aligned}$$
$$\begin{aligned} \eta \frac{dT_L}{dt}&= \epsilon _{at} \theta _4 IA_L -\frac{\psi _V f_3(T_L)}{1+\delta _TI}, \end{aligned}$$
$$\begin{aligned} \frac{dG_b}{dt}&= F_G(t) + \frac{f_1(Y_L)}{1+\delta _GI^2} - \frac{G_b}{1+\delta _G}+ \beta _1 (1-If_2(Y_L))G_b \nonumber \\&+(\beta _0+\theta _1)(1-I)G_b , \end{aligned}$$
$$\begin{aligned} \frac{dA_b}{dt}&= \psi _a \left( \frac{1}{1+\delta _AI^2} - \frac{A_b}{1+\delta _A} \right) + \epsilon _{lb} \theta _2 (A_L-A_b) , \end{aligned}$$
$$\begin{aligned} \frac{dT_b}{dt}&= \psi _t \left( F_T(t) + \frac{f_3(T_L)}{1+\delta _TI} - \frac{T_b}{1+\delta _T} \right) + (\beta _4 + \beta _5)(1-I)T_b , \end{aligned}$$
$$\begin{aligned} \frac{dI}{dt}&= \beta _6(1-I)+\beta _7(A_b-I) +\beta _8( \mathrm{erf}(w G_b-\rho ) -I \mathrm{erf}(w-\rho ) ) , \end{aligned}$$
$$\begin{aligned} \alpha \frac{\mathrm{d}G_m}{\mathrm{d}t}&= \mu _g (G_b-PIG_m) -\epsilon _{gg}\beta _0 G_m(1-I) \nonumber \\&- \epsilon _{yg}\beta _2 \left( \frac{(1+\gamma _p)}{(1+\gamma _p P)} \frac{(1+\gamma _y I)}{(1+\gamma _y)} G_m \right) -\epsilon _{yg}\beta _2\left( \frac{(1+\gamma _I)}{(1+\gamma _I I)} P Y_m\right) ,\qquad \end{aligned}$$
$$\begin{aligned} \alpha \frac{\mathrm{d}A_m}{\mathrm{d}t}&= \mu _a (A_b-A_m P) - \epsilon _{ta}\beta _4 (A_b-T_b) +\epsilon _{ta}\beta _4\gamma _t(A_b-IT_b) \nonumber \\&- \epsilon _{tg} \beta _3 \left( \frac{(1+\gamma _q)}{(1+\gamma _q P)} \frac{(1+\gamma _x I)}{(1+\gamma _x)} A_m \right) -\epsilon _{tg} \beta 3 \left( \frac{(1+\gamma _j)}{(1+\gamma _j I)} P T_m\right) , \end{aligned}$$
$$\begin{aligned} \alpha \frac{\mathrm{d}Y_m}{\mathrm{d}t}&= \beta _2 \left( \frac{(1+\gamma _p)}{(1+\gamma _p P)} \frac{(1+\gamma _y I)}{(1+\gamma _y)} G_m \right) - \beta _2 \left( \frac{(1+\gamma _I)}{(1+\gamma _I I)} P Y_m\right) , \end{aligned}$$
$$\begin{aligned} \alpha \frac{\mathrm{d}T_m}{\mathrm{d}t}&= \beta _3 \left( \frac{(1+\gamma _q)}{(1+\gamma _q P)} \frac{(1+\gamma _x I)}{(1+\gamma _x)} A_m \right) -\beta _3 \left( \frac{(1+\gamma _j)}{(1+\gamma _j I)} P T_m\right) , \end{aligned}$$
$$\begin{aligned} \alpha \frac{\mathrm{d}P}{\mathrm{d}t}&= \mu _p (1-P) + \epsilon _{gp} \gamma _g \mu _g P (1-I G_m) + \epsilon _{ap} \gamma _a \mu _a P (1-A_m) . \end{aligned}$$

where the new dimensionless parameters are given by

$$\begin{aligned}&\beta _0 \!=\! \frac{k_Gk_{GI}I^*G_b^*}{\beta _G} , \quad \beta _1 \!=\! \frac{k_LI^*G_b^*}{\beta _G} , \quad \beta _2 \!=\! \frac{k_{CP}P^*G_b^*}{\beta _GG_m^*(1\!+\!k_{CI}I^*)} , \quad \rho \!=\! \frac{v}{c} , \quad w \!=\! \frac{G^*_b}{c} ,\nonumber \\&\beta _3 \!=\! \frac{k_{DP}P^*G_b^*}{\beta _GA_m^*(1+k_{DI}I^*)} , \quad \beta _5 \!=\! \frac{k_{TA}I^*G_b^*}{\beta _G} , \quad \beta _4 \!=\! \frac{k_TI^*G_b^*}{\beta _G} , \quad \beta _6 \!=\! \frac{k_{1}{G^*_b}}{\beta _GI^*} ,\nonumber \\&\beta _7 \!=\! \frac{k_{IA}A^*_bG_b^*}{\beta _GI^*} , \quad \beta _8 \!=\! \frac{k_{2}{G^*_b}}{\beta _GI^*} , \quad \theta _1 \!=\! \frac{k_{AL}I^*G_b^*}{\beta _G} , \quad \theta _2 \!=\! \frac{k_{LB}G_b^*}{\beta _G} , \quad \theta _3 \!=\! \frac{S_LG_b^*}{\beta _G} ,\nonumber \\&\theta _4 \!=\! \frac{k_{TH}I^*G_b^*}{\beta _G} , \quad \theta _5 \!=\! \frac{k_{BL}G_b^*}{\beta _G} , \quad \gamma _Y \!=\! k_{YI}I^* , \quad \gamma _P \!=\! k_{YP}I^* , \quad \gamma _Q \!=\! k_{XP}I^* ,\nonumber \\&\gamma _I \!=\! k_{CI}I^* , \quad \gamma _J \!=\! k_{DI}I^* , \quad \gamma _X \!=\! k_{XI}I^* , \quad \mu _p \!=\! \frac{ \mu G_b^*}{ \beta _GP^*}, \quad \mu _g \!=\! \frac{ M_G P^* I^* G_b^* }{ \beta _G} ,\nonumber \\&\mu _a \!=\! \frac{ M_A P^* G_b^*}{ \beta _G}, \quad \psi _L \!=\! \frac{G_b^*}{Y_{max}}, \quad \psi _a \!=\! \frac{ \beta _A G_b^*}{ \beta _GA_b^*} , \quad \psi _T \!=\! \frac{ \beta _T G_b^*}{ \beta _GT_b^*} , \quad \psi _V \!=\! \frac{ \beta _T G_b^*}{ \beta _GT_L^H} ,\nonumber \\&\delta _G \!=\! k_{GL}{I^*}^2 , \quad \delta _T \!=\! k_{TL}I^* , \quad \delta _A \!=\! k_{AA}{I^*}^2 , \quad \delta _H \!=\! k_{AS}I^* , \quad \epsilon _{ga} \!=\! \frac{G^*_b}{A^*_L},\nonumber \\&\epsilon _{lb} \!=\! \frac{A^*_L}{A^*_b}, \quad \epsilon _{gg} \!=\! \frac{G^*_b}{G^*_m}, \quad \epsilon _{yg} \!=\! \frac{Y_m^*}{G_m^*} , \quad \epsilon _{ta} \!=\! \frac{T_b^*}{A_m^*}, \quad \epsilon _{at} \!=\! \frac{A_L^*}{T_L^H} , \quad \epsilon _{gp} \!=\! \frac{G_m^*}{P^*} ,\nonumber \\&\epsilon _{ap} \!=\! \frac{A_m^*}{P^*} , \quad \epsilon _{tg} \!=\! \frac{T^*_m}{G^*_m}, \quad \alpha \!=\! \frac{V_s}{V_b}, \quad \eta \!=\! \frac{V_l}{V_b}, \quad Y_c \!=\! \frac{Y_0}{Y_{max}}, \quad T_c \!=\! \frac{T_0}{T_L^H}. \end{aligned}$$

The values for the nondimensional parameters are given in Table 4.

Table 4 List of nondimensional parameters, their interpretation, and values used to produce the example results

Appendix 3: Graphs of Fluxes

In this section we plot various combinations of the governing concentration variables to illustrate the evolution of the fluxes in the model. Noting that the three functions \(f_1,f_2,f_3\) are defined to be unity over the vast majority of their ranges, we only need to consider 10 combinations of concentrations of functions, which are plotted in Figs. 10 and 11.

Fig. 10
figure 10

Top dimensionless fluxes involved in the model, namely the products of insulin concentration with plasma glucose (left), plasma TAG (centre) and liver FFA (right). Bottom, fluxes which involve the concentration \(P\), muscle glucose with insulin (left), muscle FFA (centre) and muscle TAG (right). All graphs plotted against time in hours. Dotted lines indicate the results for the high fat meal, whilst the solid lines represent the balanced meal

Fig. 11
figure 11

Dimensionless fluxes which are suppressed by insulin, plotted again time (hours). Top left flux from liver glucagon to plasma glucose; top right flux of FFA into plasma from adipose tissue; lower left flux of TAG from liver to plasma; lower right oxidation of liver FFA. Dotted lines indicate the results for the high fat meal, whilst the solid lines represent the balanced meal

The flux of glucose from plasma to muscle has a component which depends on insulin according to the product \(IG_b\), which we plot in the top left panel of Fig. 10. This quantity also influences the flux from plasma glucose to liver glycogen and liver FFA, see Eqs. (2), (7), (8) and (11). The flux from plasma TAG to adipose tissue as modelled in (3) depends on the product \(IT_b\), which is plotted in the top central panel. This is the only case where the high fat meal induces a higher response than the balanced meal. The product \(IA_L\) describes the rate of conversion of FFA into TAG in the liver (8)–(9).

In the muscle, both glucose and FFA are used to convert \(P\) into ATP, with rates that depend on \(PIG_m\) and \(PA_m\), respectively, as described by Eqs. (10), (11) and (13). These two fluxes are plotted in the lower left and lower centre plots in Fig. 10. The difference between balanced and high fat meals is more pronounced in the glucose term than the FFA term. The product \(P T_m\) determines the rate of conversion of TAG to FFA in muscle as described in Eqs. (13) and (14), (note that in our current parameterisation, \(k_{DI}=0\)).

In the top left panel of Fig. 11, we plot the rate of release of glucose into the plasma from liver glycogen, this is inhibited by insulin, which we have modelled by \(\beta _G/(1+k_{GL}I^2)\) in Eqs. (2) and (7). The top right panel shows the flow of FFA from adipose tissue to plasma, which has a similar form, but with \(k_{AA}\) replacing \(k_{GL}\), see Eq. (4). The flux from liver TAG to plasma TAG is shown in the lower left panel. This has weaker insulin dependence, being of the form \(\beta _T/(1+k_{TL}I)\) in Eqs. (3) and (9). The oxidation of hepatic FFA is shown in the lower right panel of Fig. 11, this has the form \(S_L A_L / (1+k_{AS}I)\), see Eq. (8). All four fluxes show significant reductions for the time that insulin is elevated, and not a great difference between the high fat mean and the balanced meal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pearson, T., Wattis, J.A.D., King, J.R. et al. A Mathematical Model of the Human Metabolic System and Metabolic Flexibility. Bull Math Biol 76, 2091–2121 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: