Skip to main content

A Mathematical Model of Chlamydial Infection Incorporating Movement of Chlamydial Particles

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We present a spatiotemporal mathematical model of chlamydial infection, host immune response, and movement of infectious particles. The resulting partial differential equations model both the dynamics of the infection and changes in infection profile observed spatially along the length of the host genital tract. This model advances previous Chlamydia modelling by incorporating spatial change. Numerical solutions and model analysis are carried out, and we present a hypothesis regarding the potential for treatment and prevention of infection by increasing chlamydial particle motility.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abdelrahman, Y. M., & Belland, R. J. (2005). The chlamydial developmental cycle. FEMS Microbiol. Rev., 29(5), 949–959.

    Article  Google Scholar 

  2. Belland, R. J., Zhong, G., Crane, D. D., Hogan, D., Sturdevant, D., Sharma, J., Beatty, W. L., & Caldwell, H. D. (2003). Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc. Natl. Acad. Sci. USA, 100(14), 8478–8483.

    Article  Google Scholar 

  3. Burns, J. A., Cliff, E. M., & Doughty, S. E. (2007). Sensitivity analysis and parameter estimation for a model of Chlamydia trachomatis infection. J. Inverse Ill-Posed Probl., 15, 19–32.

    MathSciNet  Article  MATH  Google Scholar 

  4. Cain, T. K., & Rank, R. G. (1995). Local Th1-like responses are induced by intravaginal infection of mice with the mouse pneumonitis biovar of Chlamydia trachomatis. Infect. Immun., 63, 1784–1789.

    Google Scholar 

  5. Dixon, R. E., Hwang, S. J., Hennig, G. W., Ramsey, K. H., Schripsema, J. H., Sanders, K. M., & Ward, S. M. (2009). Chlamydia infection causes loss of pacemaker cells and inhibits oocyte transport in the mouse oviduct. Biol. Reprod., 80(4), 665–673.

    Article  Google Scholar 

  6. Hoare, A., Timms, P., Bavoil, P. M., & Wilson, D. P. (2008). Spatial constraints within the chlamydial host cell inclusion predict interrupted development and persistence. BMC Microbiol., 8, 5.

    Article  Google Scholar 

  7. Magee, D. M., Williams, D. M., Smith, J. G., Bleicker, C. A., Grubbs, B. G., Schacter, J., & Rank, R. G. (1995). Role of CD8 T cells in primary Chlamydia infection. Infect. Immun., 63, 516–521.

    Google Scholar 

  8. Mallet, D., Heymer, K., & Wilson, D. P. (2007). A novel cellular automata-partial differential equation model for understanding chlamydial infection and ascension of the female genital tract. Proc. Appl. Math. Mech., 7, 2120001–2120002.

    Article  Google Scholar 

  9. Mallet, D. G., Heymer, K. J., Rank, R. G., & Wilson, D. P. (2009). Chlamydial infection and spatial ascension of the female genital tract: a novel hybrid cellular automata and continuum mathematical model. FEMS Immunol. Med. Microbiol., 57, 173–182.

    Article  Google Scholar 

  10. Morrison, S. G., Su, H., Caldwell, H. D., & Morrison, R. P. (2000). Immunity to murine Chlamydia trachomatis genital tract reinfection involves B cells and CD4+ T cells but not CD8+ T cells. Infect. Immun., 68(12), 6979–6987.

    Article  Google Scholar 

  11. Nowak, M. A., & May, R. (2000). Virus dynamics: mathematical principles of immunology and virology. New York: Oxford University Press.

    MATH  Google Scholar 

  12. Rank, R. G., & Sanders, M. M. (1992). Pathogenesis of endometritis and salpingitis in a guinea pig model of chlamydial genital infection. Am. J. Pathol., 140(4), 927–936.

    Google Scholar 

  13. Rank, R. G., Bowlin, A. K., Reed, R. L., & Darville, T. (2003). Characterization of chlamydial genital infection resulting from sexual transmission from male to female guinea pigs and determination of infectious dose. Infect. Immun., 71(11), 6148–6154.

    Article  Google Scholar 

  14. Sharomi, O., & Gumel, A. B. (2010). Mathematical study of in-host dynamics of Chlamydia trachomatis. IMA J. Appl. Math. doi:10.1093/imamat/hxq057, published online December 16, 2010.

    MathSciNet  MATH  Google Scholar 

  15. Stamm, W. E. (2004). Chlamydia screening: expanding the scope. Ann. Intern. Med., 141, 570–572.

    Article  Google Scholar 

  16. Vickers, D. M., Zhang, Q., & Osgood, N. D. (2009). Immunobiological outcomes of repeated chlamydial infection from two models of within-host population dynamics. PLoS ONE, 4(9), e6886.

    Article  Google Scholar 

  17. Wilson, D. P. (2004). Mathematical modelling of Chlamydia. ANZIAM J., 45(E), C201–C214.

    MathSciNet  MATH  Google Scholar 

  18. Wilson, D. P., & McElwain, D. L. S. (2004). A model of neutralization of Chlamydia trachomatis based on antibody and host cell aggregation on the elementary body surface. J. Theor. Biol., 226, 321–330.

    MathSciNet  Article  Google Scholar 

  19. Wilson, D. P., Timms, P., & McElwain, D. L. S. (2003). A mathematical model for the investigation of the Th1 immune response to Chlamydia trachomatis. Math. Biosci., 182(1), 27–44.

    MathSciNet  Article  MATH  Google Scholar 

  20. Wilson, D. P., Mathews, S., Wan, C., Pettitt, A. N., & McElwain, D. L. S. (2004). Use of a quantitative gene expression assay based on micro-array techniques and a mathematical model for the investigation of chlamydial generation time. Bull. Math. Biol., 66, 523–537.

    MathSciNet  Article  Google Scholar 

  21. Wilson, D. P., Timms, P., McElwain, D. L. S., & Bavoil, P. M. (2006). Type three secretion, contact-dependent model for the intracellular development of Chlamydia. Bull. Math. Biol., 68, 161–178.

    MathSciNet  Article  Google Scholar 

  22. Wilson, D. P., Bowlin, A. K., Bavoil, P. M., & Rank, R. G. (2009a). Ocular pathology elicited by Chlamydia and the predictive value of quantitative modelling. J. Infect. Dis., 199, 1780–1789.

    Article  Google Scholar 

  23. Wilson, D. P., Whittum-Hudson, J. A., Timms, P., & Bavoil, P. M. (2009b). Kinematics of intracellular chlamydiae provide evidence for contact-dependent development. J. Bacteriol., 191(19), 5734–5742.

    Article  Google Scholar 

  24. World Health Organization (2007). Global strategy for the prevention and control of sexually transmitted infections: 2006–2015: breaking the chain of transmission. Geneva: World Health Organization.

    Google Scholar 

  25. Yang, X., & Brunham, R. C. (1998). T lymphocyte immunity in host defence against Chlamydia trachomatis and its implication for vaccine development. Can. J. Infect. Dis. Med. Microbiol., 9, 99–108.

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Scott McCue and Professor Graeme Pettet for useful discussions regarding the stability analysis of the model.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dann G. Mallet.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mallet, D.G., Bagher-Oskouei, M., Farr, A.C. et al. A Mathematical Model of Chlamydial Infection Incorporating Movement of Chlamydial Particles. Bull Math Biol 75, 2257–2270 (2013). https://doi.org/10.1007/s11538-013-9891-9

Download citation

Keywords

  • Chlamydia trachomatis
  • Partial differential equation
  • Infectious diseases
  • Treatment