Skip to main content
Log in

Lattice-Free Models of Cell Invasion: Discrete Simulations and Travelling Waves

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Invasion waves of cells play an important role in development, disease, and repair. Standard discrete models of such processes typically involve simulating cell motility, cell proliferation, and cell-to-cell crowding effects in a lattice-based framework. The continuum-limit description is often given by a reaction–diffusion equation that is related to the Fisher–Kolmogorov equation. One of the limitations of a standard lattice-based approach is that real cells move and proliferate in continuous space and are not restricted to a predefined lattice structure. We present a lattice-free model of cell motility and proliferation, with cell-to-cell crowding effects, and we use the model to replicate invasion wave-type behaviour. The continuum-limit description of the discrete model is a reaction–diffusion equation with a proliferation term that is different from lattice-based models. Comparing lattice-based and lattice-free simulations indicates that both models lead to invasion fronts that are similar at the leading edge, where the cell density is low. Conversely, the two models make different predictions in the high-density region of the domain, well behind the leading edge. We analyse the continuum-limit description of the lattice-based and lattice-free models to show that both give rise to invasion wave type solutions that move with the same speed but have very different shapes. We explore the significance of these differences by calibrating the parameters in the standard Fisher–Kolmogorov equation using data from the lattice-free model. We conclude that estimating parameters using this kind of standard procedure can produce misleading results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, A. R. A., & Chaplain, M. AJ. (1998). Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol., 60, 857–900.

    Article  MATH  Google Scholar 

  • Baker, R. E., & Simpson, M. J. (2010). Correcting mean-field approximations for birth-death-movement processes. Phys. Rev. E, 82, 041905.

    Article  MathSciNet  Google Scholar 

  • Bolker, B., & Pacala, S. W. (1997). Using moment equations to undersand stochastically-driven spatial pattern formation in ecological systems. Theor. Popul. Biol., 52, 179–197.

    Article  MATH  Google Scholar 

  • Bruna, M., & Chapman, S. J. (2012a). Excluded-volume effects in the diffusion of hard spheres. Phys. Rev. E, 85, 011103.

    Article  Google Scholar 

  • Bruna, M., & Chapman, S. J. (2012b). Diffusion of multiple species with excluded-volume effects. J. Chem. Phys., 137, 204116.

    Article  Google Scholar 

  • Cai, A. Q., Landman, K. A., & Hughes, B. D. (2007). Multi-scale modeling of a wound-healing cell migration assay. J. Theor. Biol., 245, 576–594.

    Article  MathSciNet  Google Scholar 

  • Callaghan, T., Khain, E., Sander, L. M., & Ziff, R. M. (2006). A stochastic model for wound healing. J. Stat. Phys., 122, 909–924.

    Article  MathSciNet  MATH  Google Scholar 

  • Canosa, J. (1973). On a nonlinear diffusion equation describing population growth. IBM J. Res. Dev., 17, 307–313.

    Article  MathSciNet  MATH  Google Scholar 

  • Caruso, A., Caselli, E., Fiorentini, S., Rotola, A., Prandini, A., Garrafa, E., Saba, E., Alessandri, G., Cassai, E., & Di Luca, D. (2009). U94 of human herpesvirus 6 inhibits in vitro angiogenesis and lymphangiogenesis. Proc. Natl. Acad. Sci. USA, 106, 20446–20451.

    Article  Google Scholar 

  • Chapra, S. C., & Canale, R. P. (1998). Numerical methods for engineers (3rd ed.). Singapore: McGraw-Hill.

    Google Scholar 

  • Chowdhury, D., Schadschneider, A., & Nishinari, K. (2005). Physics of transport and traffic phenomena in biology: from molecular motors and cells to organisms. Phys. Life Rev., 2, 318–352.

    Article  Google Scholar 

  • Codling, E. A., Plank, M. J., & Benhamou, S. (2008). Random walk models in biology. J. R. Soc. Interface, 5, 813–834.

    Article  Google Scholar 

  • Deroulers, C., Aubert, M., Badoual, M., & Grammaticos, B. (2009). Modeling tumor cell migration: from microscopic to macroscopic models. Phys. Rev. E, 79, 031917.

    Article  MathSciNet  Google Scholar 

  • Druckenbrod, N. R., & Epstein, M. L. (2007). Behavior of enteric neural crest-derived cells varies with respect to the migratory wavefront. Dev. Dyn., 236, 84–92.

    Article  Google Scholar 

  • Dyson, L., Maini, P. K., & Baker, R. E. (2012). Macroscopic limits of individual-based models for motile cell populations with volume exclusion. Phys. Rev. E, 86, 031903.

    Article  Google Scholar 

  • Fisher, R. A. (1937). The wave of advance of advantageous genes. Ann. Eugen., 7, 355–369.

    Article  MATH  Google Scholar 

  • Khain, E., Katakowski, M., Hopkins, S., Szalad, A., Zheng, X., Jiang, F., & Chopp, M. (2011). Collective behavior of brain tumor cells: the role of hypoxia. Phys. Rev. E, 83, 031920.

    Article  Google Scholar 

  • Kolmogorov, A., Petrovsky, I., & Piscounov, N. (1937). Etude de léquation de la diffusion avec croissance de la quantité de matiere et son applicationa un probleme biologique. Mosc. Univ. Math. Bull., 1, 1–25.

    Google Scholar 

  • Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim., 9, 112–147.

    Article  MathSciNet  MATH  Google Scholar 

  • Landman, K. A., & Fernando, A. E. (2011). Myopic random walkers and exclusion processes: single and multispecies. Physica A, 390, 3742–3753.

    Article  Google Scholar 

  • Law, R., & Dieckmann, U. (2000). A dynamical system for neighbourhoods in plant communities. Ecology, 81, 2137–2148.

    Google Scholar 

  • Maini, P. K., McElwain, D. L. S., & Leavesley, D. I. (2004a). Traveling wave model to interpret a wound-healing cell migration assay for human peritoneal mesothelial cells. Tissue Eng., 10, 475–482.

    Article  Google Scholar 

  • Maini, P. K., McElwain, D. L. S., & Leavesley, D. (2004b). Travelling waves in a wound healing assay. Appl. Math. Lett., 17, 575–580.

    Article  MathSciNet  MATH  Google Scholar 

  • Murray, J. D. (2002). Mathematical biology I: an introduction (3rd ed.). Heidelberg: Springer.

    MATH  Google Scholar 

  • Nishiyama, C., Uesaka, T., Manabe, T., Yonekura, Y., Nagasawa, T., Newgreen, D. F., Young, H. M., & Enomoto, H. (2012). Trans-mesenteric neural crest cells are the principal source of the colonic enteric nervous system. Nat. Neurosci., 15, 1211–1218.

    Article  Google Scholar 

  • Othmer, H. G., Dunbar, S. R., & Alt, W. (1988). Models of dispersal in biological systems. J. Math. Biol., 26, 263–298.

    Article  MathSciNet  MATH  Google Scholar 

  • Plank, M. J., & Simpson, M. J. (2012). Models of collective cell behaviour with crowding effects: comparing lattice-based and lattice-free approaches. J. R. Soc. Interface, 9, 2983–2996.

    Article  Google Scholar 

  • Sengers, B. G., Please, C. P., & Oreffo, R. O. C. (2007). Experimental characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration. J. R. Soc. Interface, 4, 1107–1117.

    Article  Google Scholar 

  • Sengers, B. G., Please, C. P., Taylor, M., & Oreffo, R. OC. (2009). Experimental-computational evaluation of human bone marrow stromal cell spreading on trabecular bone structures. Ann. Biomed. Eng., 37, 1165–1176.

    Article  Google Scholar 

  • Shampine, L. F., & Reichelt, M. W. (1997). The MATLAB ODE suite. SIAM J. Sci. Comput., 18, 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt, J. A., & Murray, J. D. (1990). Models of epidermal wound healing. Proc. R. Soc. Lond. B, Biol. Sci., 241, 29–36.

    Article  Google Scholar 

  • Sherratt, J. A. (2000). Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 456, 2365–2386.

    Article  MathSciNet  MATH  Google Scholar 

  • Simpson, M. J., Landman, K. A., & Hughes, B. D. (2010). Cell invasion with proliferation mechanisms motivated by time-lapse data. Physica A, 389, 3779–3790.

    Article  Google Scholar 

  • Simpson, M. J., Baker, R. E., & McCue, S. W. (2011). Models of collective cell spreading with variable cell aspect ratio: a motivation for degenerate diffusion models. Phys. Rev. E, 83, 021901.

    Article  Google Scholar 

  • Simpson, M. J., Treloar, K. K., Binder, B. J., Haridas, P., Manton, K., Leavesley, D. I., McElwain, D. L. S., & Baker, R. E. (2013a). Quantifying the roles of cell motility and cell proliferation in a circular barrier assay. J. R. Soc. Interface, 10, 20130007.

    Article  Google Scholar 

  • Simpson, M. J., Binder, B. J., Haridas, P., Wood, B. K., Treloar, K. K., McElwain, D. L. S., & Baker, R. E. (2013b). Experimental and modelling investigation of monolayer development with clustering. Bull. Math. Biol., 75, 871–889.

    Article  MathSciNet  MATH  Google Scholar 

  • Skellam, J. G. (1951). Dispersal in theoretical populations. Biometrika, 1/2, 196–218.

    Article  MathSciNet  MATH  Google Scholar 

  • Swanson, K. R., Bridge, C., Murray, J. D., & Alvord, E. C. Jr. (2003). Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci., 216, 1–10.

    Article  Google Scholar 

  • Swanson, K. R., Harpold, H. L. P., Peacock, D. L., Rockne, R., Pennington, C., Kilbride, L., Grant, R., Wardlaw, J. M., & Alvord, E. C. Jr. (2008). Velocity of radial expansion of contrast-enhancing gliomas and the effectiveness of radiotherapy in individual patients: a proof of principle. J. Clin. Oncol., 20, 301–308.

    Article  Google Scholar 

  • Tremel, A., Cai, A., Tirtaatmadja, N., & Hughes, B. D. (2009). Cell migration and proliferation during monolayer formation and wound healing. Chem. Eng. Sci., 64, 247–253.

    Article  Google Scholar 

  • Witelski, T. P. (1994). An asymptotic solution for traveling waves of a nonlinear-diffusion Fisher’s equation. J. Math. Biol., 33, 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  • Witelski, T. P. (1995). Merging traveling waves for the porous-Fisher’s equation. Appl. Math. Lett., 8, 57–62.

    Article  MathSciNet  MATH  Google Scholar 

  • Witelski, T. P., Ono, K., & Kaper, T. J. (2000). On axisymmetric traveling waves and radial solutions of semi-linear elliptic equations. Nat. Resour. Model., 13, 339–388.

    Article  MathSciNet  MATH  Google Scholar 

  • Young, H. M., Bergner, A. J., Anderson, R. B., Enomoto, H., Milbrandt, J., Newgreen, D. F., & Whitington, P. M. (2004). Dynamics of neural crest-derived cell migration in the embryonic mouse gut. Dev. Biol., 270, 455–473.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the RSNZ Marsden Fund, grant number 11-UOC-005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Plank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plank, M.J., Simpson, M.J. Lattice-Free Models of Cell Invasion: Discrete Simulations and Travelling Waves. Bull Math Biol 75, 2150–2166 (2013). https://doi.org/10.1007/s11538-013-9885-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9885-7

Keywords

Navigation