Skip to main content

Advertisement

Log in

Impacts of Biotic Resource Enrichment on a Predator–Prey Population

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The environmental carrying capacity is usually assumed to be fixed quantity in the classical predator–prey population growth models. However, this assumption is not realistic as the environment generally varies with time. In a bid for greater realism, functional forms of carrying capacities have been widely applied to describe varying environments. Modelling carrying capacity as a state variable serves as another approach to capture the dynamical behavior between population and its environment. The proposed modified predator–prey model is based on the ratio-dependent models that have been utilized in the study of food chains. Using a simple non-linear system, the proposed model can be linked to an intra-guild predation model in which predator and prey share the same resource. Distinct from other models, we formulate the carrying capacity proportional to a biotic resource and both predator and prey species can directly alter the amount of resource available by interacting with it. Bifurcation and numerical analyses are presented to illustrate the system’s dynamical behavior. Taking the enrichment parameter of the resource as the bifurcation parameter, a Hopf bifurcation is found for some parameter ranges, which generate solutions that posses limit cycle behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Basener, B., & Ross, D. S. (2005). Booming and crashing populations and Easter Island. SIAM J. Appl. Math., 65, 684–701.

    Article  MathSciNet  MATH  Google Scholar 

  • Collings, J. B. (1997). The effects of the functional response on the bifurcation behavior of a mite predator–prey interaction model. J. Math. Biol., 36, 149–168.

    Article  MathSciNet  MATH  Google Scholar 

  • Diehl, S., & Feissel, M. (2000). Effects of enrichment on three-level food chains with omnivory. Am. Nat., 155(2), 200–218.

    Article  Google Scholar 

  • Diehl, S., & Feissel, M. (2001). Intraguild prey suffer from enrichment of their resources: a microcosm experiment with ciliates. Ecology, 82(11), 2977–2983.

    Article  Google Scholar 

  • Ermentrout, B. (2010). xppaut v, 6.00 2011.

  • Gakkhar, S., & Naji, R. K. (2003). Order and chaos in predator to prey ratio-dependent food chain. Chaos Solitons Fractals, 18, 229–239.

    Article  MathSciNet  MATH  Google Scholar 

  • Gasull, A., Kooij, R. E., & Torregrosa, J. (1997). Limit cycles in the Holling-Tanner model. Publ. Mat., 41, 149–167.

    Article  MathSciNet  MATH  Google Scholar 

  • Hin, V., Schellekens, T., Persson, L., & Roos, A. M. (2011). Coexistence of predator and prey in intraguild predation systems with ontogenetic niche shifts. Am. Nat., 178(6), 701–714.

    Article  Google Scholar 

  • Holt, R. D., & Polis, G. A. (1997). A theoretical framework for intraguild predation. Am. Nat., 149(4), 745–764.

    Article  Google Scholar 

  • Hoyle, A., & Bowers, R. G. (2007). When is evolutionary branching in predator–prey systems possible with an explicit carrying capacity? Math. Biosci., 210(1), 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  • Hsu, S. B., & Huang, T. W. (1995). Global stability for a class of predator–prey systems. SIAM J. Appl. Math., 55(3), 763–783.

    Article  MathSciNet  MATH  Google Scholar 

  • Jordan, D. W., & Smith, P. (1987). Geometrical aspects of plane autonomous systems. Oxford applied mathematics and computing science series: In Nonlinear ordinary differential equations (p. 109). New York: Oxford University Press.

    Google Scholar 

  • Korobeinikov, A. (2001). A Lyapunov function for Leslie-Gower predator–prey models. Appl. Math. Lett., 14, 697–699.

    Article  MathSciNet  MATH  Google Scholar 

  • Korobeinikov, A., & Lee, W. T. (2009). Global asymptotic properties for a Leslie-Gower food chain model. Math. Biosci. Eng., 6, 585–590.

    Article  MathSciNet  MATH  Google Scholar 

  • Lacitignola, D., & Tebaldi, C. (2003). Symmetry breaking effects on equilibria and time dependent regimes in adaptive Lotka-Volterra systems. Int. J. Bifurc. Chaos, 13(2), 375–392.

    Article  MathSciNet  MATH  Google Scholar 

  • Leslie, P. H. (1958). A stochastic model for studying the properties of certain biological systems by numerical methods. Biometrika, 45(1/2), 16–31.

    Article  MathSciNet  MATH  Google Scholar 

  • Leslie, P. H., & Gower, J. C. (1960). The properties of a stochastic model for the predator–prey type of interaction between two species. Biometrika, 47(3/4), 219–234.

    Article  MathSciNet  MATH  Google Scholar 

  • MathWorks (2008). matlab v R2009a. The MathWorks, USA.

  • Mylius, S. D., Klumpers, K., de Roos, A. M., & Persson, L., (2001). Impact of intraguild predation and stage structure on simple communities along a productivity gradient. Am. Nat., 158(3), 259–276.

    Article  Google Scholar 

  • Polis, G. A., & Holt, R. D. (1992). Intraguild predation—the dynamics of complex trophic interactions. Trends Ecol. Evol., 7(5), 151–154.

    Article  Google Scholar 

  • Polis, G. A., Myers, C. A., & Holt, R. D. (1989). The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu. Rev. Ecol. Evol. Syst., 20(1), 297–330.

    Article  Google Scholar 

  • Rosenzweig, M. L. (1971). Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science, 171, 385–387.

    Article  Google Scholar 

  • Saez, E., & Olivares, E. G. (1999). Dynamics of a predator–prey model. SIAM J. Appl. Math., 59(5), 1867–1878.

    Article  MathSciNet  MATH  Google Scholar 

  • Safuan, H. M., Towers, I. N., Jovanoski, Z., & Sidhu, H. S. (2012). Coupled logistic carrying capacity model. ANZIAM J., 53, C172–C184.

    MathSciNet  Google Scholar 

  • Seidl, I., & Tisdell, C. A. (1999). Carrying capacity reconsidered: from Malthus’s population theory to cultural carrying capacity. Ecol. Econ., 31, 395–408.

    Article  Google Scholar 

  • Seo, G., & Kot, M. (2008). A comparison of two predator–prey models with Holling’s type I functional response. Math. Biosci., 212, 161–179.

    Article  MathSciNet  MATH  Google Scholar 

  • Sprott, J. C. (2011). Chaos in Easter Island ecology. Nonlinear Dyn. Psychol. Life Sci., 15(4), 445–454.

    MathSciNet  Google Scholar 

  • Tanner, J. T. (1975). The stability and the intrinsic growth rates of prey and predator populations. Ecology, 56, 855–867.

    Article  Google Scholar 

  • Walter, G. K., & Peterson, A. C. (2010). Autonomous system. In The theory of differential equations: classical and qualitative (pp. 134–135). New York: Springer.

    Google Scholar 

  • Wang, F., & Pang, G. (2008). Chaos and Hopf bifurcation of a hybrid ratio-dependent three species food chain. Chaos Solitons Fractals, 36, 1366–1376.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Q., Fan, M., & Wang, K. (2003). Dynamics of a class of nonautonomous semi-ratio-dependent predator–prey systems with functional responses. J. Math. Anal. Appl., 278, 443–471.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

HMS is thankful to M.I. Nelson for his help in the bifurcation analysis section. HMS acknowledges Universiti Tun Hussein Onn Malaysia and the School of Physical, Environmental, and Mathematical Sciences, UNSW Canberra for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Safuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safuan, H.M., Sidhu, H.S., Jovanoski, Z. et al. Impacts of Biotic Resource Enrichment on a Predator–Prey Population. Bull Math Biol 75, 1798–1812 (2013). https://doi.org/10.1007/s11538-013-9869-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9869-7

Keywords

Navigation