Skip to main content

On Circuit Functionality in Boolean Networks

Abstract

It has been proved, for several classes of continuous and discrete dynamical systems, that the presence of a positive (resp. negative) circuit in the interaction graph of a system is a necessary condition for the presence of multiple stable states (resp. a cyclic attractor). A positive (resp. negative) circuit is said to be functional when it “generates” several stable states (resp. a cyclic attractor). However, there are no definite mathematical frameworks translating the underlying meaning of “generates.” Focusing on Boolean networks, we recall and propose some definitions concerning the notion of functionality along with associated mathematical results.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Aracena, J. (2008). Maximum number of fixed points in regulatory Boolean networks. Bull. Math. Biol., 70, 1398–1409.

    MathSciNet  MATH  Article  Google Scholar 

  • Aracena, J., Demongeot, J., & Goles, E. (2004). Positive and negative circuits in discrete neural networks. IEEE Trans. Neural Netw., 15, 77–83.

    Article  Google Scholar 

  • Cinquin, O., & Demongeot, J. (2002). Positive and negative feedback: striking a balance between necessary antagonists. J. Theor. Biol., 216, 229–241.

    MathSciNet  Article  Google Scholar 

  • Demongeot, J., Noual, M., & Sené, S. (2011). Combinatorics of Boolean automata circuits dynamics. Discrete Appl. Math., 160, 398–415. 2012.

    Article  Google Scholar 

  • Gouzé, J. (1998). Positive and negative circuits in dynamical systems. J. Biol. Syst., 6, 11–15.

    MATH  Article  Google Scholar 

  • Naldi, A., Thieffry, D., & Chaouiya, C. (2007). Decision diagrams for the representation and analysis of logical models of genetic networks. In LNCS: Vol. 4695. Computational methods in systems biology (pp. 233–247). Berlin: Springer.

    Chapter  Google Scholar 

  • Plathe, E., Mestl, T., & Omholt, S. (1995). Feedback loops, stability and multistationarity in dynamical systems. J. Biol. Syst., 3, 569–577.

    Article  Google Scholar 

  • Remy, E., & Ruet, P. (2006). Positive and negative regulatory circuit inference from multilevel dynamics. In LNCIS: Vol. 341. Positive systems: theory and applications (pp. 263–270). Berlin: Springer.

    Chapter  Google Scholar 

  • Remy, E., & Ruet, P. (2008). From minimal signed circuits to the dynamics of Boolean regulatory networks. Bioinformatics, 24, i220–i226.

    Article  Google Scholar 

  • Remy, E., Mossé, B., Chaouiya, C., & Thieffry, D. (2003). A description of dynamical graphs associated to elementary regulatory circuits. Bioinformatics, 19, 172–178.

    Article  Google Scholar 

  • Remy, E., Ruet, P., & Thieffry, D. (2008). Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework. Adv. Appl. Math., 41, 335–350.

    MathSciNet  MATH  Article  Google Scholar 

  • Richard, A. (2010). Negative circuits and sustained oscillations in asynchronous automata networks. Adv. Appl. Math., 44, 378–392.

    MathSciNet  MATH  Article  Google Scholar 

  • Richard, A. (2011). Local negative circuits and fixed points in non-expansive Boolean networks. Discrete Appl. Math., 159, 1085–1093.

    MathSciNet  MATH  Article  Google Scholar 

  • Richard, A. (2013). Fixed point theorems for Boolean networks expressed in terms of forbidden subnetworks. arXiv preprint.

  • Richard, A., & Comet, J.-P. (2007). Necessary conditions for multistationarity in discrete dynamical systems. Discrete Appl. Math., 155, 2403–2413.

    MathSciNet  MATH  Article  Google Scholar 

  • Shih, M.-H., & Dong, J.-L. (2005). A combinatorial analogue of the Jacobian problem in automata networks. Adv. Appl. Math., 34, 30–46.

    MathSciNet  MATH  Article  Google Scholar 

  • Siebert, H. (2009). Deriving behavior of Boolean bioregulatory networks from subnetwork dynamics. Math. Comput. Sci., 2, 421–442.

    MathSciNet  MATH  Article  Google Scholar 

  • Siebert, H. (2011). Analysis of discrete bioregulatory networks using symbolic steady states. Bull. Math. Biol., 73, 873–898.

    MathSciNet  MATH  Article  Google Scholar 

  • Snoussi, E. (1998). Necessary conditions for multistationarity and stable periodicity. J. Biol. Syst., 6, 3–9.

    MATH  Article  Google Scholar 

  • Snoussi, E., & Thomas, R. (1993). Logical identification of all steady states: the concept of feedback loop characteristic states. Bull. Math. Biol., 55, 973–991.

    MATH  Google Scholar 

  • Soulé, C. (2003). Graphical requirements for multistationarity. Complexus, 1, 123–133.

    Article  Google Scholar 

  • Soulé, C. (2006). Mathematical approaches to differentiation and gene regulation. C. R. Biol., 329, 13–20.

    Article  Google Scholar 

  • Thomas, R. (1973). Boolean formalization of genetic control circuits. J. Theor. Biol., 42, 563–585.

    Article  Google Scholar 

  • Thomas, R. (1981). On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In Springer series in synergies: Vol. 9. Numerical methods in the study of critical phenomena (pp. 180–193). Berlin: Springer.

    Chapter  Google Scholar 

  • Thomas, R., & Kaufman, M. (2001). Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos, 11, 180–195.

    MathSciNet  MATH  Article  Google Scholar 

  • Thomas, R., Thieffry, D., & Kaufman, M. (1995). Dynamical behavior of biological regulatory networks—I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol., 57, 247–276.

    MATH  Google Scholar 

Download references

Acknowledgements

This paper results from a collective discussion that took place during the workshop Logical formalism, gains, and challenges for the modeling of regulatory networks, held at Rabat, Morocco, from 12th to 15th of April 2011. We are grateful to Mohamed Hedi Ben Amor, Claudine Chaouiya, Madalena Chaves, Eric Fanchon, Pedro Monteiro, Elisabeth Remy, Paul Ruet, Sylvain Sené, Christophe Soulé, Laurent Tournier, and Laurent Trilling for taking part to this discussion. This work is partially supported by FONDECYT project 1090549 and BASAL project CMM, Universidad de Chile, and also by the French National Agency for Research (ANR-10-BLANC-0218 BioTempo project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Comet.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Comet, JP., Noual, M., Richard, A. et al. On Circuit Functionality in Boolean Networks. Bull Math Biol 75, 906–919 (2013). https://doi.org/10.1007/s11538-013-9829-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9829-2

Keywords

  • Boolean network
  • Interaction graph
  • Feedback circuit
  • Fixed point
  • Multistability
  • Cyclic attractor