Bulletin of Mathematical Biology

, Volume 75, Issue 5, pp 709–724 | Cite as

Cross-Feeding Dynamics Described by a Series Expansion of the Replicator Equation

Original Article

Abstract

Understanding how ecosystems evolve and how they respond to external perturbations is critical if we are to predict the effects of human intervention. A particular class of ecosystems whose dynamics are poorly understood are those in which the species are related via cross-feeding. In these ecosystems the metabolic output of one species is being used as a nutrient or energy source by another species. In this paper we derive a mathematical description of cross-feeding dynamics based on the replicator equation. We show that under certain assumptions about the system (e.g., high flow of nutrients and time scale separation), the governing equations reduce to a second-order series expansion of the replicator equation. By analysing the case of two and three species we derive conditions for co-existence and show under which parameter conditions one can expect an increase in mean fitness. Finally, we discuss how the model can be parameterised from experimental data.

Keywords

Syntrophy Cross-feeding Population dynamics 

References

  1. Belenguer, A., Duncan, S., Calder, A., Holtrop, G., Louis, P., Lobley, G., & Flint, H. (2006). Two routes of metabolic cross-feeding between bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl. Environ. Microbiol., 72, 3593. CrossRefGoogle Scholar
  2. Bull, J. J., & Harcombe, W. R. (2009). Population dynamics constrain the cooperative evolution of cross-feeding. PLoS ONE, 4, e4115. CrossRefGoogle Scholar
  3. Costa, E., Perez, J., & Kreft, J.-U. (2006). Why is metabolic labour divided in nitrification? Trends Microbiol., 14, 213–219. CrossRefGoogle Scholar
  4. Crombach, A., & Hogeweg, P. (2009). Evolution of resource cycling in ecosystems and individuals. BMC Evol. Biol., 9, 122. CrossRefGoogle Scholar
  5. Doebeli, M. (2002). A model for the evolutionary dynamics of cross-feeding polymorphisms in microorganisms. Popul. Ecol., 44, 59–70. CrossRefGoogle Scholar
  6. Estrela, S., & Gudelj, I. (2010). Evolution of cooperative cross-feeding could be less challenging than originally thought. PLoS ONE, 5, e14121. CrossRefGoogle Scholar
  7. Fisher, R. (1930). The genetical theory of natural selection. New York: Clarendon. MATHGoogle Scholar
  8. Gerlee, P., & Lundh, T. (2010). Productivity and diversity in a cross-feeding population of artificial organisms. Evolution, 64, 2716–2730. CrossRefGoogle Scholar
  9. Helling, R. B., Vargas, C. N., & Adams, J. (1987). Evolution of escherichia coli during growth in a constant environment. Genetics, 116, 349–358. Google Scholar
  10. Jansen, W. (1987). A permanence theorem for replicator and Lotka–Volterra systems. J. Math. Biol., 25, 411–422. MathSciNetMATHCrossRefGoogle Scholar
  11. Katsuyama, C., Nakaoka, S., Takeuchi, Y., Tago, K., Hayatsu, M., & Kato, K. (2009). Complementary cooperation between two syntrophic bacteria in pesticide degradation. J. Theor. Biol., 256, 644–654. CrossRefGoogle Scholar
  12. Pelz, O., Tesar, M., Wittich, R., Moore, E. R. B., Timmis, K. N., & Abraham, W. R. (1999). Towards elucidation of microbial community metabolic pathways: unravelling the network of carbon sharing in a pollutant-degrading bacterial consortium by immunocapture and isotopic ratio mass spectrometry. Environ. Microbiol., 1, 167–174. CrossRefGoogle Scholar
  13. Pernthaler, A., Dekas, A., Brown, C., Goffredi, S., Embaye, T., & Orphan, V. (2008). Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc. Natl. Acad. Sci. USA, 105, 7052. CrossRefGoogle Scholar
  14. Pfeiffer, T., & Bonhoeffer, S. (2004). Evolution of cross-feeding in microbial populations. Am. Nat., 163, E126–E135. CrossRefGoogle Scholar
  15. Rozen, D., & Lenski, R. (2000). Long-term experimental evolution in escherichia coli. VIII. Dynamics of a balanced polymorphism. Am. Nat., 155, 24–35. CrossRefGoogle Scholar
  16. Saxer, G., Doebeli, M., & Travisano, M. (2009). Spatial structure leads to ecological breakdown and loss of diversity. Proc. Biol. Sci., 276, 2065–2070. CrossRefGoogle Scholar
  17. Schuster, P., & Sigmund, K. (1983). Replicator dynamics. J. Theor. Biol., 100, 333–338. MathSciNetCrossRefGoogle Scholar
  18. Shashahani, S. (1979). A new mathematical framework for the study of linkage and selection. Mem. Am. Math. Soc., 211. Google Scholar
  19. Stams, A. J. (1994). Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek, 66, 271–294. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  1. 1.Sahlgrenska Cancer CenterInstitute of MedicineGöteborgSweden
  2. 2.Mathematical SciencesUniversity of Gothenburg and Chalmers University of TechnologyGöteborgSweden

Personalised recommendations