Modeling Intercellular Transfer of Biomolecules Through Tunneling Nanotubes

Abstract

Tunneling nanotubes (TNTs) have previosly been observed as long and thin transient structures forming between cells and intercellular protein transfer through them has been experimentally verified. It is hypothesized that this may be a physiologically important means of cell–cell communication. This paper attempts to give a simple model for the rates of transfer of molecules across these TNTs at different distances. We describe the transfer of both cytosolic and membrane bound molecules between neighboring populations of cells and argue how the lifetime of the TNT, the diffusion rate, distance between cells, and the size of the molecules may affect their transfer. The model described makes certain predictions and opens a number of questions to be explored experimentally.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abou-Khalil, R., et al. (2009). Autocrine and paracrine angiopoietin 1/Tie-2 signaling promotes muscle satellite cell self-renewal. Cell Stem Cell, 5(3), 298–309.

    Article  Google Scholar 

  2. Agnati, L. F., et al. (2011). Possible new targets for GPCR modulation: allosteric interactions, plasma membrane domains, intercellular transfer and epigenetic mechanisms. J. Recept. Signal Transduct. Res., 31(5), 315–331.

    Article  Google Scholar 

  3. Ahmed, K. A., & Xiang, J. (2011). Mechanisms of cellular communication through intercellular protein transfer. J. Cell. Mol. Med., 15(7), 1458–1473.

    Article  Google Scholar 

  4. Al-Nedawi, K., et al. (2008). Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol., 10(5), 619–624.

    Article  Google Scholar 

  5. Ambudkar, S. V., Sauna, Z. E., Gottesman, M. M., & Szakacs, G. (2005). A novel way to spread drug resistance in tumor cells: functional intercellular transfer of P-glycoprotein (ABCB1). Trends Pharmacol. Sci., 26(8), 385–387.

    Article  Google Scholar 

  6. Baba, E., et al. (2001). Functional CD4 T cells after intercellular molecular transfer of 0X40 ligand. J. Immunol., 167(2), 875–883.

    Google Scholar 

  7. Behnke, B. J., Armstrong, R. B., & Delp, M. D. (2011). Adrenergic control of vascular resistance varies in muscles composed of different fiber types: influence of the vascular endothelium. Am. J. Physiol., Regul. Integr. Comp. Physiol., 301(3), R783–790.

    Article  Google Scholar 

  8. Bosenberg, M. W., & Massague, J. (1993). Juxtacrine cell signaling molecules. Curr. Opin. Cell Biol., 5(5), 832–838.

    Article  Google Scholar 

  9. Bukoreshtliev, N. V., et al. (2009). Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Lett., 583(9), 1481–1488.

    Article  Google Scholar 

  10. Camussi, G., Deregibus, M. C., Bruno, S., Cantaluppi, V., & Biancone, L. (2010). Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int., 78(9), 838–848.

    Article  Google Scholar 

  11. Carlin, L. M., Eleme, K., McCann, F. E., & Davis, D. M. (2001). Intercellular transfer and supramolecular organization of human leukocyte antigen C at inhibitory natural killer cell immune synapses. J. Exp. Med., 194(10), 1507–1517.

    Article  Google Scholar 

  12. Davis, D. M. (2007). Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat. Rev. Immunol., 7(3), 238–243.

    Article  Google Scholar 

  13. Denzer, K., Kleijmeer, M. J., Heijnen, H. F., Stoorvogel, W., & Geuze, H. J. (2000). Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J. Cell Sci., 113(19), 3365–3374.

    Google Scholar 

  14. Driesen, R. B., et al. (2005). Partial cell fusion: a newly recognized type of communication between dedifferentiating cardiomyocytes and fibroblasts. Cardiovasc. Res., 68(1), 37–46.

    Article  Google Scholar 

  15. Eugenina, E. A., Gaskilla, P. J., & Bermana, J. W. (2009). Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: A potential mechanism for intercellular HIV trafficking. Cell. Immunol., 254(2), 142–148.

    Article  Google Scholar 

  16. Gregor, T., Bialek, W., de Ruyter van Steveninck, R. R., Tank, T. D., & Wieschaus, E. F. (2005). Diffusion and scaling during early embryonic pattern formation. Proc. Natl. Acad. Sci. USA, 102(51), 18403–18407.

    Article  Google Scholar 

  17. Groebe, K., Erz, S., & Mueller-Klieser, W. (1994). Glucose diffusion coefficients determined from concentration profiles in EMT6 tumor spheroids incubated in radioactively labeled L-glucose. Adv. Exp. Med. Biol., 361, 619–625.

    Article  Google Scholar 

  18. Guescini, M., et al. (2012). Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures. In Experimental cell research.

    Google Scholar 

  19. Gurke, S., et al. (2008). Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells. Exp. Cell Res., 314(20), 3669–3683.

    Article  Google Scholar 

  20. Levchenko, A., et al. (2005). Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells. Proc. Natl. Acad. Sci. USA, 102(6), 1933–1938.

    Article  Google Scholar 

  21. Li, M., et al. (2010). Intercellular transfer of proteins as identified by stable isotope labeling of amino acids in cell culture. J. Biol. Chem., 285(9), 6285–6297.

    Article  Google Scholar 

  22. Lichtenberger, B. M., et al. (2010). Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell, 140(2), 268–279.

    Article  Google Scholar 

  23. Lou, E., et al. (2012). Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS ONE, 7(3), e33093.

    Article  Google Scholar 

  24. Luby-Phelps, K., Taylor, D. L., & Lanni, F. (1986). Probing the structure of cytoplasm. J. Cell Biol., 102(6), 2015–2022.

    Article  Google Scholar 

  25. Mack, M., et al. (2000). Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat. Med., 6(7), 769–775.

    Article  Google Scholar 

  26. Marzo, L., Gousset, K., & Zurzolo, C. (2012). Multifaceted roles of tunneling nanotubes in intercellular communication. Front. Physiol., 3, 72.

    Article  Google Scholar 

  27. Nicholson, C., & Tao, L. (1993). Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys. J., 65(6), 2277–2290.

    Article  Google Scholar 

  28. Niu, X., Gupta, K., Yang, J. T., Shamblott, M. J., & Levchenko, A. (2009). Physical transfer of membrane and cytoplasmic components as a general mechanism of cell–cell communication. J. Cell Sci., 122(5), 600–610.

    Article  Google Scholar 

  29. Pap, E., Pallinger, E., Pasztoi, M., & Falus, A. (2009). Highlights of a new type of intercellular communication: microvesicle-based information transfer. Inflamm. Res., 58(1), 1–8.

    Article  Google Scholar 

  30. Phillips, G. N. Jr. (1997). Structure and dynamics of green fluorescent protein. Curr. Opin. Struct. Biol., 7(6), 821–827.

    Article  Google Scholar 

  31. Prochiantz, A. (2011). Homeoprotein intercellular transfer, the hidden face of cell-penetrating peptides. Methods Mol. Biol., 683, 249–257.

    Article  Google Scholar 

  32. Qin, L., Bromberg-White, J. L., & Qian, C. N. (2012). Opportunities and challenges in tumor angiogenesis research: back and forth between bench and bed. Adv. Cancer Res., 113, 191–239.

    Article  Google Scholar 

  33. Quah, B. J., et al. (2008). Bystander B cells rapidly acquire antigen receptors from activated B cells by membrane transfer. Proc. Natl. Acad. Sci. USA, 105(11), 4259–4264.

    Article  Google Scholar 

  34. Rustom, A., Saffrich, R., Markovic, I., Walther, P., & Gerdes, H. H. (2004). Nanotubular highways for intercellular organelle transport. Science, 303(5660), 1007–1010.

    Article  Google Scholar 

  35. Singh, A. B., & Harris, R. C. (2005). Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell. Signal., 17(10), 1183–1193.

    Article  Google Scholar 

  36. Stine, M. J., et al. (2011). Integration of genotypic and phenotypic screening reveals molecular mediators of melanoma-stromal interaction. Cancer Res., 71(7), 2433–2444.

    Article  Google Scholar 

  37. Twiss, J. L., & Fainzilber, M. (2009). Ribosomes in axons—scrounging from the neighbors? Trends Cell Biol., 19(5), 236–243.

    Article  Google Scholar 

  38. Valadi, H., et al. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 9(6), 654–659.

    Article  Google Scholar 

  39. Vikne, H., Gundersen, K., Liestol, K., Maelen, J., & Vollestad, N. (2012). Intermuscular relationship of human muscle fiber type proportions: slow leg muscles predict slow neck muscles. Muscle Nerve, 45(4), 527–535.

    Article  Google Scholar 

  40. Weis, S. M., & Cheresh, D. A. (2011). Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med., 17(11), 1359–1370.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andre Levchenko.

Additional information

Y. Suhail and Kshitiz contributed equally to the manuscript.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Suhail, Y., Kshitiz, Lee, J. et al. Modeling Intercellular Transfer of Biomolecules Through Tunneling Nanotubes. Bull Math Biol 75, 1400–1416 (2013). https://doi.org/10.1007/s11538-013-9819-4

Download citation

Keywords

  • Diffusion Length
  • Donor Cell
  • Protein Transfer
  • Cytoplasmic Protein
  • Recipient Cell