Bulletin of Mathematical Biology

, Volume 75, Issue 8, pp 1400–1416 | Cite as

Modeling Intercellular Transfer of Biomolecules Through Tunneling Nanotubes

  • Yasir Suhail
  • Kshitiz
  • Justin Lee
  • Mark Walker
  • Deok-Ho Kim
  • Matthew D. Brennan
  • Joel S. Bader
  • Andre LevchenkoEmail author
Original Article


Tunneling nanotubes (TNTs) have previosly been observed as long and thin transient structures forming between cells and intercellular protein transfer through them has been experimentally verified. It is hypothesized that this may be a physiologically important means of cell–cell communication. This paper attempts to give a simple model for the rates of transfer of molecules across these TNTs at different distances. We describe the transfer of both cytosolic and membrane bound molecules between neighboring populations of cells and argue how the lifetime of the TNT, the diffusion rate, distance between cells, and the size of the molecules may affect their transfer. The model described makes certain predictions and opens a number of questions to be explored experimentally.


Diffusion Length Donor Cell Protein Transfer Cytoplasmic Protein Recipient Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abou-Khalil, R., et al. (2009). Autocrine and paracrine angiopoietin 1/Tie-2 signaling promotes muscle satellite cell self-renewal. Cell Stem Cell, 5(3), 298–309. CrossRefGoogle Scholar
  2. Agnati, L. F., et al. (2011). Possible new targets for GPCR modulation: allosteric interactions, plasma membrane domains, intercellular transfer and epigenetic mechanisms. J. Recept. Signal Transduct. Res., 31(5), 315–331. CrossRefGoogle Scholar
  3. Ahmed, K. A., & Xiang, J. (2011). Mechanisms of cellular communication through intercellular protein transfer. J. Cell. Mol. Med., 15(7), 1458–1473. CrossRefGoogle Scholar
  4. Al-Nedawi, K., et al. (2008). Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol., 10(5), 619–624. CrossRefGoogle Scholar
  5. Ambudkar, S. V., Sauna, Z. E., Gottesman, M. M., & Szakacs, G. (2005). A novel way to spread drug resistance in tumor cells: functional intercellular transfer of P-glycoprotein (ABCB1). Trends Pharmacol. Sci., 26(8), 385–387. CrossRefGoogle Scholar
  6. Baba, E., et al. (2001). Functional CD4 T cells after intercellular molecular transfer of 0X40 ligand. J. Immunol., 167(2), 875–883. Google Scholar
  7. Behnke, B. J., Armstrong, R. B., & Delp, M. D. (2011). Adrenergic control of vascular resistance varies in muscles composed of different fiber types: influence of the vascular endothelium. Am. J. Physiol., Regul. Integr. Comp. Physiol., 301(3), R783–790. CrossRefGoogle Scholar
  8. Bosenberg, M. W., & Massague, J. (1993). Juxtacrine cell signaling molecules. Curr. Opin. Cell Biol., 5(5), 832–838. CrossRefGoogle Scholar
  9. Bukoreshtliev, N. V., et al. (2009). Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Lett., 583(9), 1481–1488. CrossRefGoogle Scholar
  10. Camussi, G., Deregibus, M. C., Bruno, S., Cantaluppi, V., & Biancone, L. (2010). Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int., 78(9), 838–848. CrossRefGoogle Scholar
  11. Carlin, L. M., Eleme, K., McCann, F. E., & Davis, D. M. (2001). Intercellular transfer and supramolecular organization of human leukocyte antigen C at inhibitory natural killer cell immune synapses. J. Exp. Med., 194(10), 1507–1517. CrossRefGoogle Scholar
  12. Davis, D. M. (2007). Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat. Rev. Immunol., 7(3), 238–243. CrossRefGoogle Scholar
  13. Denzer, K., Kleijmeer, M. J., Heijnen, H. F., Stoorvogel, W., & Geuze, H. J. (2000). Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J. Cell Sci., 113(19), 3365–3374. Google Scholar
  14. Driesen, R. B., et al. (2005). Partial cell fusion: a newly recognized type of communication between dedifferentiating cardiomyocytes and fibroblasts. Cardiovasc. Res., 68(1), 37–46. CrossRefGoogle Scholar
  15. Eugenina, E. A., Gaskilla, P. J., & Bermana, J. W. (2009). Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: A potential mechanism for intercellular HIV trafficking. Cell. Immunol., 254(2), 142–148. CrossRefGoogle Scholar
  16. Gregor, T., Bialek, W., de Ruyter van Steveninck, R. R., Tank, T. D., & Wieschaus, E. F. (2005). Diffusion and scaling during early embryonic pattern formation. Proc. Natl. Acad. Sci. USA, 102(51), 18403–18407. CrossRefGoogle Scholar
  17. Groebe, K., Erz, S., & Mueller-Klieser, W. (1994). Glucose diffusion coefficients determined from concentration profiles in EMT6 tumor spheroids incubated in radioactively labeled L-glucose. Adv. Exp. Med. Biol., 361, 619–625. CrossRefGoogle Scholar
  18. Guescini, M., et al. (2012). Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures. In Experimental cell research. Google Scholar
  19. Gurke, S., et al. (2008). Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells. Exp. Cell Res., 314(20), 3669–3683. CrossRefGoogle Scholar
  20. Levchenko, A., et al. (2005). Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells. Proc. Natl. Acad. Sci. USA, 102(6), 1933–1938. CrossRefGoogle Scholar
  21. Li, M., et al. (2010). Intercellular transfer of proteins as identified by stable isotope labeling of amino acids in cell culture. J. Biol. Chem., 285(9), 6285–6297. CrossRefGoogle Scholar
  22. Lichtenberger, B. M., et al. (2010). Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell, 140(2), 268–279. CrossRefGoogle Scholar
  23. Lou, E., et al. (2012). Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS ONE, 7(3), e33093. CrossRefGoogle Scholar
  24. Luby-Phelps, K., Taylor, D. L., & Lanni, F. (1986). Probing the structure of cytoplasm. J. Cell Biol., 102(6), 2015–2022. CrossRefGoogle Scholar
  25. Mack, M., et al. (2000). Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat. Med., 6(7), 769–775. CrossRefGoogle Scholar
  26. Marzo, L., Gousset, K., & Zurzolo, C. (2012). Multifaceted roles of tunneling nanotubes in intercellular communication. Front. Physiol., 3, 72. CrossRefGoogle Scholar
  27. Nicholson, C., & Tao, L. (1993). Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys. J., 65(6), 2277–2290. CrossRefGoogle Scholar
  28. Niu, X., Gupta, K., Yang, J. T., Shamblott, M. J., & Levchenko, A. (2009). Physical transfer of membrane and cytoplasmic components as a general mechanism of cell–cell communication. J. Cell Sci., 122(5), 600–610. CrossRefGoogle Scholar
  29. Pap, E., Pallinger, E., Pasztoi, M., & Falus, A. (2009). Highlights of a new type of intercellular communication: microvesicle-based information transfer. Inflamm. Res., 58(1), 1–8. CrossRefGoogle Scholar
  30. Phillips, G. N. Jr. (1997). Structure and dynamics of green fluorescent protein. Curr. Opin. Struct. Biol., 7(6), 821–827. CrossRefGoogle Scholar
  31. Prochiantz, A. (2011). Homeoprotein intercellular transfer, the hidden face of cell-penetrating peptides. Methods Mol. Biol., 683, 249–257. CrossRefGoogle Scholar
  32. Qin, L., Bromberg-White, J. L., & Qian, C. N. (2012). Opportunities and challenges in tumor angiogenesis research: back and forth between bench and bed. Adv. Cancer Res., 113, 191–239. CrossRefGoogle Scholar
  33. Quah, B. J., et al. (2008). Bystander B cells rapidly acquire antigen receptors from activated B cells by membrane transfer. Proc. Natl. Acad. Sci. USA, 105(11), 4259–4264. CrossRefGoogle Scholar
  34. Rustom, A., Saffrich, R., Markovic, I., Walther, P., & Gerdes, H. H. (2004). Nanotubular highways for intercellular organelle transport. Science, 303(5660), 1007–1010. CrossRefGoogle Scholar
  35. Singh, A. B., & Harris, R. C. (2005). Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell. Signal., 17(10), 1183–1193. CrossRefGoogle Scholar
  36. Stine, M. J., et al. (2011). Integration of genotypic and phenotypic screening reveals molecular mediators of melanoma-stromal interaction. Cancer Res., 71(7), 2433–2444. CrossRefGoogle Scholar
  37. Twiss, J. L., & Fainzilber, M. (2009). Ribosomes in axons—scrounging from the neighbors? Trends Cell Biol., 19(5), 236–243. CrossRefGoogle Scholar
  38. Valadi, H., et al. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 9(6), 654–659. CrossRefGoogle Scholar
  39. Vikne, H., Gundersen, K., Liestol, K., Maelen, J., & Vollestad, N. (2012). Intermuscular relationship of human muscle fiber type proportions: slow leg muscles predict slow neck muscles. Muscle Nerve, 45(4), 527–535. CrossRefGoogle Scholar
  40. Weis, S. M., & Cheresh, D. A. (2011). Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med., 17(11), 1359–1370. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  • Yasir Suhail
    • 1
    • 2
  • Kshitiz
    • 1
    • 3
  • Justin Lee
    • 3
  • Mark Walker
    • 1
  • Deok-Ho Kim
    • 3
  • Matthew D. Brennan
    • 1
  • Joel S. Bader
    • 1
    • 2
  • Andre Levchenko
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.High-Throughput Biology CenterJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of BioengineeringUniversity of WashingtonSeattleUSA

Personalised recommendations