Skip to main content
Log in

Modeling the Spatial Spread of Rift Valley Fever in Egypt

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Rift Valley fever (RVF) is a severe viral zoonosis in Africa and the Middle East that harms both human health and livestock production. It is believed that RVF in Egypt has been repeatedly introduced by the importation of infected animals from Sudan. In this paper, we propose a three-patch model for the process by which animals enter Egypt from Sudan, are moved up the Nile, and then consumed at population centers. The basic reproduction number for each patch is introduced and then the threshold dynamics of the model are established. We simulate an interesting scenario showing a possible explanation of the observed phenomenon of the geographic spread of RVF in Egypt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abd el-Rahim, I. H., Abd el-Hakim, U., & Hussein, M. (1999). An epizootic of Rift Valley fever in Egypt in 1997. Rev. Sci. Tech., 18, 741–748.

    Google Scholar 

  • Abdo-Salem, S., Tran, A., Grosbois, V., Gerbier, G., Al-Qadasi, M., Saeed, K., Etter, E., Thiry, E., Roger, F., & Chevalier, V. (2011a). Can environmental and socioeconomic factors explain the recent emergence of Rift Valley fever in Yemen, 2000–2001? Vector-Borne Zoonotic Dis., 11, 773–779.

    Article  Google Scholar 

  • Abdo-Salem, S., Waret-Szkuta, A., Roger, F., Olive, M., Saeed, K., & Chevalier, V. (2011b). Risk assessment of the introduction of Rift Valley fever from the Horn of Africa to Yemen via legal trade of small ruminants. Trop. Anim. Health Prod., 43, 471–480.

    Article  Google Scholar 

  • Anyamba, A., Chretien, J.-P., Small, J., Tucker, C. J., Formenty, P. B., Richardson, J. H., Britch, S. C., Schnabel, D. C., Erickson, R. L., & Linthicum, K. J. (2009). Prediction of a Rift Valley fever outbreak. Proc. Natl. Acad. Sci. USA, 106, 955–959.

    Article  Google Scholar 

  • Chamchod, F., Cantrell, R. S., Cosner, C., Hassan, A., Beier, J. C., & Ruan, S. (2012, submitted). A modeling approach to investigate epizootic outbreaks and enzootic maintenance of Rift Valley fever virus.

  • Chitnis, N., Hyman, J. M., & Cushing, J. M. (2008). Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol., 70, 1272–1296.

    Article  MathSciNet  MATH  Google Scholar 

  • Daubney, R., Hudson, J. R., & Granham, P. C. (1931). Enzootic hepatitis or Rift Valley fever: an undescribed virus disease of sheep cattle and man from East Africa. J. Pathol. Bacteriol., 34, 545–579.

    Article  Google Scholar 

  • Favier, C., Chalvet-Monfray, K., Sabatier, P., Lancelot, R., Fontenille, D., & Dubois, M. A. (2006). Rift Valley fever in West Africa: the role of space in endemicity. Trop. Med. Int. Health, 11, 1878–1888.

    Article  Google Scholar 

  • Gad, A. M., Feinsod, F. M., Allam, I. H., Eisa, M., Hassan, A. N., Soliman, B. A., el Said, S., & Saah, A. J. (1986). A possible route for the introduction of Rift Valley fever virus into Egypt during 1977. J. Trop. Med. Hyg., 89, 233–236.

    Google Scholar 

  • Gaff, H. D., Hartley, D. M., & Leahy, N. P. (2007). An epidemiological model of Rift Valley Fever. Electron. J. Differ. Equ., 115, 1–12.

    MathSciNet  Google Scholar 

  • Gao, D., & Ruan, S. (2011). An SIS patch model with variable transmission coefficients. Math. Biosci., 232, 110–115.

    Article  MathSciNet  MATH  Google Scholar 

  • Hoogstraal, H., Meegan, J. M., Khalil, G. M., & Adham, F. K. (1979). The Rift Valley fever epizootic in Egypt 1977–78. II. Ecological and entomological studies. Trans. R. Soc. Trop. Med. Hyg., 73, 624–629.

    Article  Google Scholar 

  • Ikegami, T., & Makinob, S. (2009). Rift Valley fever vaccines. Vaccine, 27, D69–D72.

    Article  Google Scholar 

  • Kamal, S. A. (2011). Observations on Rift Valley fever virus and vaccines in Egypt. Virol. J., 8, 532.

    Article  Google Scholar 

  • LaSalle, J. P. (1976). The stability of dynamical systems. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Li, M. Y., & Muldowney, J. S. (1996). A geometric approach to global-stability problems. SIAM J. Math. Anal., 27, 1070–1083.

    Article  MathSciNet  MATH  Google Scholar 

  • Linthicum, K. J., Anyamba, A., Tucker, C. J., Kelley, P. W., Myers, M. F., & Peters, C. J. (1999). Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science, 285, 397–400.

    Article  Google Scholar 

  • Meegan, J. M. (1979). The Rift Valley fever epizootic in Egypt 1977–78: 1. Description of the epizootic and virological studies. Trans. R. Soc. Trop. Med. Hyg., 73, 618–623.

    Article  Google Scholar 

  • Meegan, J. M., Khalil, G. M., Hoogstraal, H., & Adham, F. K. (1980). Experimental transmission and field isolation studies implicating Culex pipiens as a vector of Rift Valley fever virus in Egypt. Am. J. Trop. Med. Hyg., 29, 1405–1410.

    Google Scholar 

  • Métras, R., Collins, L. M., White, R. G., Alonso, S., Chevalier, V., Thuranira-McKeever, C., & Pfeiffer, D. U. (2011). Rift Valley fever epidemiology, surveillance, and control: what have models contributed? Vector-Borne Zoonotic Dis., 11, 761–771.

    Article  Google Scholar 

  • Mpeshe, S. C., Haario, H., & Tchuenche, J. M. (2011). A mathematical model of Rift Valley fever with human host. Acta Biotheor., 59, 231–250.

    Article  Google Scholar 

  • Paweska, J. T., Mortimer, E., Leman, P. A., & Swanepoel, R. (2005). An inhibition enzyme-linked immunosorbent assay for the detection of antibody to Rift Valley fever virus in humans, domestic and wild ruminants. J. Virol. Methods, 127, 10–18.

    Article  Google Scholar 

  • Smith, H. L., & Waltman, P. (1995). The theory of the chemostat. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Thieme, H. R. (1993). Persistence under relaxed point-dissipativity (with application to an endemic model). SIAM J. Math. Anal., 24, 407–435.

    Article  MathSciNet  MATH  Google Scholar 

  • van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180, 29–48.

    Article  MathSciNet  MATH  Google Scholar 

  • World Health Organization (2010). Rift Valley fever, fact sheet no. 207. http://www.who.int/mediacentre/factsheets/fs207/en/.

  • Xue, L., Scott, H. M., Cohnstaedt, L. W., & Scoglio, C. (2012). A network-based meta-population approach to model Rift Valley fever epidemics. J. Theor. Biol., 306, 129–144.

    Article  MathSciNet  Google Scholar 

  • Yang, H., Wei, H., & Li, X. (2010). Global stability of an epidemic model for vector-borne disease. J. Syst. Sci. Complex., 23, 279–292.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We thank two anonymous referees for their valuable comments and suggestions which led to an improvement of our original manuscript. Research was supported by the National Institute of Health (NIH) grant R01GM093345.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigui Ruan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, D., Cosner, C., Cantrell, R.S. et al. Modeling the Spatial Spread of Rift Valley Fever in Egypt. Bull Math Biol 75, 523–542 (2013). https://doi.org/10.1007/s11538-013-9818-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9818-5

Keywords

Navigation