Skip to main content

Experimental and Computational Investigation of the Role of Stress Fiber Contractility in the Resistance of Osteoblasts to Compression

Abstract

The mechanical behavior of the actin cytoskeleton has previously been investigated using both experimental and computational techniques. However, these investigations have not elucidated the role the cytoskeleton plays in the compression resistance of cells. The present study combines experimental compression techniques with active modeling of the cell’s actin cytoskeleton. A modified atomic force microscope is used to perform whole cell compression of osteoblasts. Compression tests are also performed on cells following the inhibition of the cell actin cytoskeleton using cytochalasin-D. An active bio-chemo-mechanical model is employed to predict the active remodeling of the actin cytoskeleton. The model incorporates the myosin driven contractility of stress fibers via a muscle-like constitutive law. The passive mechanical properties, in parallel with active stress fiber contractility parameters, are determined for osteoblasts. Simulations reveal that the computational framework is capable of predicting changes in cell morphology and increased resistance to cell compression due to the contractility of the actin cytoskeleton. It is demonstrated that osteoblasts are highly contractile and that significant changes to the cell and nucleus geometries occur when stress fiber contractility is removed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Avalos, P. G., Reichenzeller, M., Eils, R., & Gladilin, E. (2011). Probing compressibility of the nuclear interior in wild-type and lamin deficient cells using microscopic imaging and computational modeling. J. Biomech., 44(15), 2642–2648.

    Article  Google Scholar 

  • Broers, J. L. V., Peeters, E. A. G., Kuijpers, H. J. H., Endert, J., Bouten, C. V. C., Oomens, C. W. J., Baaijens, F. P. T., & Ramaekers, F. C. S. (2004). Decreased mechanical stiffness in lmna–/– cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum. Mol. Genet., 13(21), 2567–2580.

    Article  Google Scholar 

  • Butt, H. J., & Jaschke, M. (1995). Calculation of thermal noise in atomic force microscopy. Nanotechnology, 6(1), 1–7.

    Article  Google Scholar 

  • Caille, N., Thoumine, O., Tardy, Y., & Meister, J. J. (2002). Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech., 35(2), 177–187.

    Article  Google Scholar 

  • Chancellor, T., Lee, J., Thodeti, C. K., & Lele, T. (2010). Actomyosin tension exerted on the nucleus through nesprin-1 connections influences endothelial cell adhesion, migration, and cyclic strain-induced reorientation. Biophys. J., 99(1), 115–123.

    Article  Google Scholar 

  • Cleveland, J. P., Manne, S., Bocek, D., & Hansma, P. K. (1993). A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instrum., 64(2), 403–405.

    Article  Google Scholar 

  • Darling, E. M., Topel, M., Zauscher, S., Vail, T. P., & Guilak, F. (2008). Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J. Biomech., 41(2), 454–464.

    Article  Google Scholar 

  • Deng, Z., Lulevich, V., Liu, F.-t., & Liu, G.-y. (2010). Applications of atomic force microscopy in biophysical chemistry of cells. J. Phys. Chem. B, 114(18), 5971–5982.

    Article  Google Scholar 

  • Deshpande, V. S., McMeeking, R. M., & Evans, A. G. (2006). A bio-chemo-mechanical model for cell contractility. Proc. Natl. Acad. Sci., 103(38), 14015–14020.

    Article  Google Scholar 

  • Deshpande, V. S., McMeeking, R. M., & Evans, A. G. (2007). A model for the contractility of the cytoskeleton including the effects of stress-fibre formation and dissociation. Proc. R. Soc. A, Math. Phys. Eng. Sci., 463(2079), 787–815.

    MathSciNet  MATH  Article  Google Scholar 

  • Dowling, E. P., Ronan, W., Ofek, G., Deshpande, V. S., Athanasiou, K. A., McMeeking, R. M., & McGarry, J. P. (2012). The effect of remodelling and contractility of the actin cytoskeleton on the shear resistance of single cells: a computational and experimental investigation. J. R. Soc. Interface, 9(77), 3469–3479.

    Article  Google Scholar 

  • Duncan, R., & Turner, C. (1995). Mechanotransduction and the functional response of bone to mechanical strain. Calcif. Tissue Int., 57(5), 344–358.

    Article  Google Scholar 

  • Franke, R. P., Grafe, M., Schnittler, H., Seiffge, D., Mittermayer, C., & Drenckhahn, D. (1984). Induction of human vascular endothelial stress fibres by fluid shear stress. Nature, 307(5952), 648–649.

    Article  Google Scholar 

  • Frost, H. M. (2004). A 2003 update of bone physiology and Wolff’s law for clinicians. Angle Orthod., 74(1), 3–15.

    Google Scholar 

  • Gabbay, J. S., Zuk, P. A., Tahernia, A., Askari, M., O’Hara, C. M., Karthikeyan, T., Azari, K., Hollinger, J. O., & Bradley, J. P. (2006). In vitro microdistraction of preosteoblasts: distraction promotes proliferation and oscillation promotes differentiation. Tissue Eng., 12(11), 3055–3065.

    Article  Google Scholar 

  • Guilak, F., & Mow, V. C. (2000). The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J. Biomech., 33(12), 1663–1673.

    Article  Google Scholar 

  • Guilak, F., Tedrow, J. R., & Burgkart, R. (2000). Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun., 269(3), 781–786.

    Article  Google Scholar 

  • Haider, M. A., & Guilak, F. (2002). An axisymmetric boundary integral model for assessing elastic cell properties in the micropipette aspiration contact problem. J. Biomech. Eng., 124(5), 586–595.

    Article  Google Scholar 

  • Higuchi, C., Nakamura, N., Yoshikawa, H., & Itoh, K. (2009). Transient dynamic actin cytoskeletal change stimulates the osteoblastic differentiation. J. Bone Miner. Metab., 27(2), 158–167.

    Article  Google Scholar 

  • Hofmann, U. G., Rotsch, C., Parak, W. J., & Radmacher, M. (1997). Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope. J. Struct. Biol., 119(2), 84–91.

    Article  Google Scholar 

  • Houben, F., Ramaekers, F. C. S., Snoeckx, L. H. E. H., & Broers, J. L. V. (2007). Role of nuclear lamina-cytoskeleton interactions in the maintenance of cellular strength. Biochim. Biophys. Acta, Mol. Cell Res., 1773(5), 675–686.

    Article  Google Scholar 

  • Kelly, G. M., Kilpatrick, J. I., van Es, M. H., Weafer, P. P., Prendergast, P. J., & Jarvis, S. P. (2011). Bone cell elasticity and morphology changes during the cell cycle. J. Biomech., 44(8), 1484–1490.

    Article  Google Scholar 

  • Khatau, S. B., Hale, C. M., Stewart-Hutchinson, P. J., Patel, M. S., Stewart, C. L., Searson, P. C., Hodzic, D., & Wirtz, D. (2009). A perinuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci., 106(45), 19017–19022.

    Article  Google Scholar 

  • Kolega, J. (1986). Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture. J. Cell Biol., 102(4), 1400–1411.

    Article  Google Scholar 

  • Lulevich, V., Zink, T., Chen, H.-Y., Liu, F.-T., & Liu, G.-y. (2006). Cell mechanics using atomic force microscopy-based single-cell compression. Langmuir, 22(19), 8151–8155.

    Article  Google Scholar 

  • McGarry, J. P. (2009). Characterization of cell mechanical properties by computational modeling of parallel plate compression. Ann. Biomed. Eng., 37(11), 2317–2325.

    Article  Google Scholar 

  • McGarry, J. P., & McHugh, P. E. (2008). Modelling of in vitro chondrocyte detachment. J. Mech. Phys. Solids, 56(4), 1554–1565.

    Article  Google Scholar 

  • McGarry, J. P., Murphy, B. P., & McHugh, P. E. (2005). Computational mechanics modelling of cell-substrate contact during cyclic substrate deformation. J. Mech. Phys. Solids, 53(12), 2597–2637.

    MATH  Article  Google Scholar 

  • McGarry, J. G., Maguire, P., Campbell, V. A., O’Connell, B. C., Prendergast, P. J., & Jarvis, S. P. (2008). Stimulation of nitric oxide mechanotransduction in single osteoblasts using atomic force microscopy. J. Orthop. Res., 26(4), 513–521.

    Article  Google Scholar 

  • McGarry, J. P., Fu, J., Yang, M. T., Chen, C. S., McMeeking, R. M., Evans, A. G., & Deshpande, V. S. (2009). Simulation of the contractile response of cells on an array of micro-posts. Philos. Trans. R. Soc., Math. Phys. Eng. Sci., 367(1902), 3477–3497.

    MathSciNet  MATH  Article  Google Scholar 

  • Mohrdieck, C., Wanner, A., Roos, W., Roth, A., Sackmann, E., Spatz, J. P., & Arzt, E. (2005). A theoretical description of elastic pillar substrates in biophysical experiments. ChemPhysChem, 6(8), 1492–1498.

    Article  Google Scholar 

  • Ofek, G., Natoli, R. M., & Athanasiou, K. A. (2009a). In situ mechanical properties of the chondrocyte cytoplasm and nucleus. J. Biomech., 42(7), 873–877.

    Article  Google Scholar 

  • Ofek, G., Wiltz, D. C., & Athanasiou, K. A. (2009b). Contribution of the cytoskeleton to the compressive properties and recovery behavior of single cells. Biophys. J., 97(7), 1873–1882.

    Article  Google Scholar 

  • Owan, I., Burr, D. B., Turner, C. H., Qiu, J., Tu, Y., Onyia, J. E., & Duncan, R. L. (1997). Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am. J. Physiol., Cell Physiol., 273(3), C810–C815.

    Google Scholar 

  • Pathak, A., Deshpande, V. S., McMeeking, R. M., & Evans, A. G. (2008). The simulation of stress fibre and focal adhesion development in cells on patterned substrates. J. R. Soc. Interface, 5(22), 507–524.

    Article  Google Scholar 

  • Peeters, E. A., Oomens, C. W., Bouten, C. V., Bader, D. L., & Baaijens, F. P. (2005a). Viscoelastic properties of single attached cells under compression. J. Biomech. Eng., 127(2), 237–243.

    Article  Google Scholar 

  • Peeters, E. A., Oomens, C. W., Bouten, C. V., Bader, D. L., & Baaijens, F. P. (2005b). Mechanical and failure properties of single attached cells under compression. J. Biomech., 38(8), 1685–1693.

    Article  Google Scholar 

  • Rath, B., Nam, J., Knobloch, T. J., Lannutti, J. J., & Agarwal, S. (2008). Compressive forces induce osteogenic gene expression in calvarial osteoblasts. J. Biomech., 41(5), 1095–1103.

    Article  Google Scholar 

  • Ronan, W., Deshpande, V. S., McMeeking, R. M., & McGarry, J. P. (2011). Simulation of stress fiber remodeling and mixed mode focal adhesion assembly during cell spreading and for cells adhered to elastic substrates. In: Proceedings of the ASME 2011 summer bioengineering conference, SBC2011-53878, Farmington, PA, USA.

    Google Scholar 

  • Ronan, W., Deshpande, V. S., McMeeking, R. M., & McGarry, J. P. (2012). Numerical investigation of the active role of the actin cytoskeleton in the compression resistance of cells. J. Mech. Behav. Biomed. Mater., 14, 143–157.

    Article  Google Scholar 

  • Rotsch, C., & Radmacher, M. (2000). Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys. J., 78(1), 520–535.

    Article  Google Scholar 

  • Rowat, A. C., Foster, L. J., Nielsen, M. M., Weiss, M., & Ipsen, J. H. (2005). Characterization of the elastic properties of the nuclear envelope. J. R. Soc. Interface, 2(2), 63–69.

    Article  Google Scholar 

  • Shieh, A. C., & Athanasiou, K. A. (2007). Dynamic compression of single cells. Osteoarthr. Cartil., 15(3), 328–334.

    Article  Google Scholar 

  • Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C., & Janmey, P. A. (2005). Nonlinear elasticity in biological gels. Nature, 435(7039), 191–194.

    Article  Google Scholar 

  • Thoumine, O., Cardoso, O., & Meister, J. J. (1999). Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study. Eur. Biophys. J. Biophys. Lett., 28(3), 222–234.

    Article  Google Scholar 

  • Warshaw, D. M., Desrosiers, J. M., Work, S. S., & Trybus, K. M. (1990). Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J. Cell Biol., 111(2), 453–463.

    Article  Google Scholar 

  • Weafer, P., McGarry, J., van Es, M., Kilpatrick, J., Ronan, W., Nolan, D., & Jarvis, S. (2012). Stability enhancement of an atomic force microscope for long-term force measurement including cantilever modification for whole cell deformation. Rev. Sci. Instrum., 83(9), 093709.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Science Foundation Ireland (Grant No. 08/RFP/ENM1726), the Irish Research Council for Science and Engineering Technology, and the Irish Centre for High End Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. McGarry.

Additional information

P.P. Weafer and W. Ronan are joint first authors.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 769 kB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weafer, P.P., Ronan, W., Jarvis, S.P. et al. Experimental and Computational Investigation of the Role of Stress Fiber Contractility in the Resistance of Osteoblasts to Compression. Bull Math Biol 75, 1284–1303 (2013). https://doi.org/10.1007/s11538-013-9812-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9812-y

Keywords

  • In-vitro cell compression
  • Active stress fiber model