Bulletin of Mathematical Biology

, Volume 75, Issue 8, pp 1284–1303 | Cite as

Experimental and Computational Investigation of the Role of Stress Fiber Contractility in the Resistance of Osteoblasts to Compression

  • P. P. Weafer
  • W. Ronan
  • S. P. Jarvis
  • J. P. McGarry
Original Article


The mechanical behavior of the actin cytoskeleton has previously been investigated using both experimental and computational techniques. However, these investigations have not elucidated the role the cytoskeleton plays in the compression resistance of cells. The present study combines experimental compression techniques with active modeling of the cell’s actin cytoskeleton. A modified atomic force microscope is used to perform whole cell compression of osteoblasts. Compression tests are also performed on cells following the inhibition of the cell actin cytoskeleton using cytochalasin-D. An active bio-chemo-mechanical model is employed to predict the active remodeling of the actin cytoskeleton. The model incorporates the myosin driven contractility of stress fibers via a muscle-like constitutive law. The passive mechanical properties, in parallel with active stress fiber contractility parameters, are determined for osteoblasts. Simulations reveal that the computational framework is capable of predicting changes in cell morphology and increased resistance to cell compression due to the contractility of the actin cytoskeleton. It is demonstrated that osteoblasts are highly contractile and that significant changes to the cell and nucleus geometries occur when stress fiber contractility is removed.


In-vitro cell compression Active stress fiber model 



This work was supported by Science Foundation Ireland (Grant No. 08/RFP/ENM1726), the Irish Research Council for Science and Engineering Technology, and the Irish Centre for High End Computing.

Supplementary material

11538_2013_9812_MOESM1_ESM.pdf (769 kb)
(PDF 769 kB)


  1. Avalos, P. G., Reichenzeller, M., Eils, R., & Gladilin, E. (2011). Probing compressibility of the nuclear interior in wild-type and lamin deficient cells using microscopic imaging and computational modeling. J. Biomech., 44(15), 2642–2648. CrossRefGoogle Scholar
  2. Broers, J. L. V., Peeters, E. A. G., Kuijpers, H. J. H., Endert, J., Bouten, C. V. C., Oomens, C. W. J., Baaijens, F. P. T., & Ramaekers, F. C. S. (2004). Decreased mechanical stiffness in lmna–/– cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum. Mol. Genet., 13(21), 2567–2580. CrossRefGoogle Scholar
  3. Butt, H. J., & Jaschke, M. (1995). Calculation of thermal noise in atomic force microscopy. Nanotechnology, 6(1), 1–7. CrossRefGoogle Scholar
  4. Caille, N., Thoumine, O., Tardy, Y., & Meister, J. J. (2002). Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech., 35(2), 177–187. CrossRefGoogle Scholar
  5. Chancellor, T., Lee, J., Thodeti, C. K., & Lele, T. (2010). Actomyosin tension exerted on the nucleus through nesprin-1 connections influences endothelial cell adhesion, migration, and cyclic strain-induced reorientation. Biophys. J., 99(1), 115–123. CrossRefGoogle Scholar
  6. Cleveland, J. P., Manne, S., Bocek, D., & Hansma, P. K. (1993). A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instrum., 64(2), 403–405. CrossRefGoogle Scholar
  7. Darling, E. M., Topel, M., Zauscher, S., Vail, T. P., & Guilak, F. (2008). Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J. Biomech., 41(2), 454–464. CrossRefGoogle Scholar
  8. Deng, Z., Lulevich, V., Liu, F.-t., & Liu, G.-y. (2010). Applications of atomic force microscopy in biophysical chemistry of cells. J. Phys. Chem. B, 114(18), 5971–5982. CrossRefGoogle Scholar
  9. Deshpande, V. S., McMeeking, R. M., & Evans, A. G. (2006). A bio-chemo-mechanical model for cell contractility. Proc. Natl. Acad. Sci., 103(38), 14015–14020. CrossRefGoogle Scholar
  10. Deshpande, V. S., McMeeking, R. M., & Evans, A. G. (2007). A model for the contractility of the cytoskeleton including the effects of stress-fibre formation and dissociation. Proc. R. Soc. A, Math. Phys. Eng. Sci., 463(2079), 787–815. MathSciNetzbMATHCrossRefGoogle Scholar
  11. Dowling, E. P., Ronan, W., Ofek, G., Deshpande, V. S., Athanasiou, K. A., McMeeking, R. M., & McGarry, J. P. (2012). The effect of remodelling and contractility of the actin cytoskeleton on the shear resistance of single cells: a computational and experimental investigation. J. R. Soc. Interface, 9(77), 3469–3479. CrossRefGoogle Scholar
  12. Duncan, R., & Turner, C. (1995). Mechanotransduction and the functional response of bone to mechanical strain. Calcif. Tissue Int., 57(5), 344–358. CrossRefGoogle Scholar
  13. Franke, R. P., Grafe, M., Schnittler, H., Seiffge, D., Mittermayer, C., & Drenckhahn, D. (1984). Induction of human vascular endothelial stress fibres by fluid shear stress. Nature, 307(5952), 648–649. CrossRefGoogle Scholar
  14. Frost, H. M. (2004). A 2003 update of bone physiology and Wolff’s law for clinicians. Angle Orthod., 74(1), 3–15. Google Scholar
  15. Gabbay, J. S., Zuk, P. A., Tahernia, A., Askari, M., O’Hara, C. M., Karthikeyan, T., Azari, K., Hollinger, J. O., & Bradley, J. P. (2006). In vitro microdistraction of preosteoblasts: distraction promotes proliferation and oscillation promotes differentiation. Tissue Eng., 12(11), 3055–3065. CrossRefGoogle Scholar
  16. Guilak, F., & Mow, V. C. (2000). The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J. Biomech., 33(12), 1663–1673. CrossRefGoogle Scholar
  17. Guilak, F., Tedrow, J. R., & Burgkart, R. (2000). Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun., 269(3), 781–786. CrossRefGoogle Scholar
  18. Haider, M. A., & Guilak, F. (2002). An axisymmetric boundary integral model for assessing elastic cell properties in the micropipette aspiration contact problem. J. Biomech. Eng., 124(5), 586–595. CrossRefGoogle Scholar
  19. Higuchi, C., Nakamura, N., Yoshikawa, H., & Itoh, K. (2009). Transient dynamic actin cytoskeletal change stimulates the osteoblastic differentiation. J. Bone Miner. Metab., 27(2), 158–167. CrossRefGoogle Scholar
  20. Hofmann, U. G., Rotsch, C., Parak, W. J., & Radmacher, M. (1997). Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope. J. Struct. Biol., 119(2), 84–91. CrossRefGoogle Scholar
  21. Houben, F., Ramaekers, F. C. S., Snoeckx, L. H. E. H., & Broers, J. L. V. (2007). Role of nuclear lamina-cytoskeleton interactions in the maintenance of cellular strength. Biochim. Biophys. Acta, Mol. Cell Res., 1773(5), 675–686. CrossRefGoogle Scholar
  22. Kelly, G. M., Kilpatrick, J. I., van Es, M. H., Weafer, P. P., Prendergast, P. J., & Jarvis, S. P. (2011). Bone cell elasticity and morphology changes during the cell cycle. J. Biomech., 44(8), 1484–1490. CrossRefGoogle Scholar
  23. Khatau, S. B., Hale, C. M., Stewart-Hutchinson, P. J., Patel, M. S., Stewart, C. L., Searson, P. C., Hodzic, D., & Wirtz, D. (2009). A perinuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci., 106(45), 19017–19022. CrossRefGoogle Scholar
  24. Kolega, J. (1986). Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture. J. Cell Biol., 102(4), 1400–1411. CrossRefGoogle Scholar
  25. Lulevich, V., Zink, T., Chen, H.-Y., Liu, F.-T., & Liu, G.-y. (2006). Cell mechanics using atomic force microscopy-based single-cell compression. Langmuir, 22(19), 8151–8155. CrossRefGoogle Scholar
  26. McGarry, J. P. (2009). Characterization of cell mechanical properties by computational modeling of parallel plate compression. Ann. Biomed. Eng., 37(11), 2317–2325. CrossRefGoogle Scholar
  27. McGarry, J. P., & McHugh, P. E. (2008). Modelling of in vitro chondrocyte detachment. J. Mech. Phys. Solids, 56(4), 1554–1565. CrossRefGoogle Scholar
  28. McGarry, J. P., Murphy, B. P., & McHugh, P. E. (2005). Computational mechanics modelling of cell-substrate contact during cyclic substrate deformation. J. Mech. Phys. Solids, 53(12), 2597–2637. zbMATHCrossRefGoogle Scholar
  29. McGarry, J. G., Maguire, P., Campbell, V. A., O’Connell, B. C., Prendergast, P. J., & Jarvis, S. P. (2008). Stimulation of nitric oxide mechanotransduction in single osteoblasts using atomic force microscopy. J. Orthop. Res., 26(4), 513–521. CrossRefGoogle Scholar
  30. McGarry, J. P., Fu, J., Yang, M. T., Chen, C. S., McMeeking, R. M., Evans, A. G., & Deshpande, V. S. (2009). Simulation of the contractile response of cells on an array of micro-posts. Philos. Trans. R. Soc., Math. Phys. Eng. Sci., 367(1902), 3477–3497. MathSciNetzbMATHCrossRefGoogle Scholar
  31. Mohrdieck, C., Wanner, A., Roos, W., Roth, A., Sackmann, E., Spatz, J. P., & Arzt, E. (2005). A theoretical description of elastic pillar substrates in biophysical experiments. ChemPhysChem, 6(8), 1492–1498. CrossRefGoogle Scholar
  32. Ofek, G., Natoli, R. M., & Athanasiou, K. A. (2009a). In situ mechanical properties of the chondrocyte cytoplasm and nucleus. J. Biomech., 42(7), 873–877. CrossRefGoogle Scholar
  33. Ofek, G., Wiltz, D. C., & Athanasiou, K. A. (2009b). Contribution of the cytoskeleton to the compressive properties and recovery behavior of single cells. Biophys. J., 97(7), 1873–1882. CrossRefGoogle Scholar
  34. Owan, I., Burr, D. B., Turner, C. H., Qiu, J., Tu, Y., Onyia, J. E., & Duncan, R. L. (1997). Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am. J. Physiol., Cell Physiol., 273(3), C810–C815. Google Scholar
  35. Pathak, A., Deshpande, V. S., McMeeking, R. M., & Evans, A. G. (2008). The simulation of stress fibre and focal adhesion development in cells on patterned substrates. J. R. Soc. Interface, 5(22), 507–524. CrossRefGoogle Scholar
  36. Peeters, E. A., Oomens, C. W., Bouten, C. V., Bader, D. L., & Baaijens, F. P. (2005a). Viscoelastic properties of single attached cells under compression. J. Biomech. Eng., 127(2), 237–243. CrossRefGoogle Scholar
  37. Peeters, E. A., Oomens, C. W., Bouten, C. V., Bader, D. L., & Baaijens, F. P. (2005b). Mechanical and failure properties of single attached cells under compression. J. Biomech., 38(8), 1685–1693. CrossRefGoogle Scholar
  38. Rath, B., Nam, J., Knobloch, T. J., Lannutti, J. J., & Agarwal, S. (2008). Compressive forces induce osteogenic gene expression in calvarial osteoblasts. J. Biomech., 41(5), 1095–1103. CrossRefGoogle Scholar
  39. Ronan, W., Deshpande, V. S., McMeeking, R. M., & McGarry, J. P. (2011). Simulation of stress fiber remodeling and mixed mode focal adhesion assembly during cell spreading and for cells adhered to elastic substrates. In: Proceedings of the ASME 2011 summer bioengineering conference, SBC2011-53878, Farmington, PA, USA. Google Scholar
  40. Ronan, W., Deshpande, V. S., McMeeking, R. M., & McGarry, J. P. (2012). Numerical investigation of the active role of the actin cytoskeleton in the compression resistance of cells. J. Mech. Behav. Biomed. Mater., 14, 143–157. CrossRefGoogle Scholar
  41. Rotsch, C., & Radmacher, M. (2000). Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys. J., 78(1), 520–535. CrossRefGoogle Scholar
  42. Rowat, A. C., Foster, L. J., Nielsen, M. M., Weiss, M., & Ipsen, J. H. (2005). Characterization of the elastic properties of the nuclear envelope. J. R. Soc. Interface, 2(2), 63–69. CrossRefGoogle Scholar
  43. Shieh, A. C., & Athanasiou, K. A. (2007). Dynamic compression of single cells. Osteoarthr. Cartil., 15(3), 328–334. CrossRefGoogle Scholar
  44. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C., & Janmey, P. A. (2005). Nonlinear elasticity in biological gels. Nature, 435(7039), 191–194. CrossRefGoogle Scholar
  45. Thoumine, O., Cardoso, O., & Meister, J. J. (1999). Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study. Eur. Biophys. J. Biophys. Lett., 28(3), 222–234. CrossRefGoogle Scholar
  46. Warshaw, D. M., Desrosiers, J. M., Work, S. S., & Trybus, K. M. (1990). Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J. Cell Biol., 111(2), 453–463. CrossRefGoogle Scholar
  47. Weafer, P., McGarry, J., van Es, M., Kilpatrick, J., Ronan, W., Nolan, D., & Jarvis, S. (2012). Stability enhancement of an atomic force microscope for long-term force measurement including cantilever modification for whole cell deformation. Rev. Sci. Instrum., 83(9), 093709. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  • P. P. Weafer
    • 1
  • W. Ronan
    • 1
  • S. P. Jarvis
    • 2
  • J. P. McGarry
    • 1
  1. 1.Department of Mechanical and Biomedical EngineeringNational University of IrelandGalwayIreland
  2. 2.Nanoscale Function Group, Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland

Personalised recommendations