Skip to main content

Dimensionality Reduction of Bistable Biological Systems

Abstract

Time hierarchies, arising as a result of interactions between system’s components, represent a ubiquitous property of dynamical biological systems. In addition, biological systems have been attributed switch-like properties modulating the response to various stimuli across different organisms and environmental conditions. Therefore, establishing the interplay between these features of system dynamics renders itself a challenging question of practical interest in biology. Existing methods are suitable for systems with one stable steady state employed as a well-defined reference. In such systems, the characterization of the time hierarchies has already been used for determining the components that contribute to the dynamics of biological systems. However, the application of these methods to bistable nonlinear systems is impeded due to their inherent dependence on the reference state, which in this case is no longer unique. Here, we extend the applicability of the reference-state analysis by proposing, analyzing, and applying a novel method, which allows investigation of the time hierarchies in systems exhibiting bistability. The proposed method is in turn used in identifying the components, other than reactions, which determine the systemic dynamical properties. We demonstrate that in biological systems of varying levels of complexity and spanning different biological levels, the method can be effectively employed for model simplification while ensuring preservation of qualitative dynamical properties (i.e., bistability). Finally, by establishing a connection between techniques from nonlinear dynamics and multivariate statistics, the proposed approach provides the basis for extending reference-based analysis to bistable systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Anderson, J., Chang, Y.-C., & Papachristodoulou, A. (2011). Model decomposition and reduction tools for large-scale networks in systems biology. Automatica, 47, 1165–1174.

    MathSciNet  MATH  Article  Google Scholar 

  • Blauwkamp, T. A., & Ninfa, A. J. (2002). Physiological role of the glnk signal transduction protein of Escherichia coli: survival of nitrogen starvation. Mol. Microbiol., 46, 203–214.

    Article  Google Scholar 

  • Burgard, A. P., Pharkya, P., & Maranas, C. D. (2003). Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng., 84(6), 647–657.

    Article  Google Scholar 

  • Calzolari, D., Paternostro, G., Patrick, L., Harrington, Jr., Piermarocchi, C., & Duxbury, P. M. (2007). Selective control of the apoptosis signaling network in heterogeneous cell populations. PLoS ONE, 2(6), e547.

    Article  Google Scholar 

  • Chung, B. K. S., & Lee, D. Y. (2009). Flux-sum analysis: a metabolite-centric approach for understanding the metabolic network. BMC Syst. Biol., 3, 117.

    MathSciNet  Article  Google Scholar 

  • Ciliberto, A., Capuani, F., & Tyson, J. J. (2007). Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation. PLoS Comput. Biol., 3(3), e45.

    MathSciNet  Article  Google Scholar 

  • Conradi, C., Saez-Rodriguez, J., Gilles, E.-D., & Raisch, J. (2005). Using chemical reaction network theory to discard a kinetic mechanism hypothesis. In IEE proc. systems biology, December 2005 (Vol. 152, pp. 243–248).

    Google Scholar 

  • Conradi, C., Saez-Rodriguez, J., Gilles, E.-D., & Raisch, J. (2006). Chemical reaction network theory: a tool for systems biology. In Proceedings of the 5th MATHMOD, 2006.

    Google Scholar 

  • Conradi, C., Flockerzi, D., Raisch, J., & Stelling, J. (2007a). Subnetwork analysis reveals dynamic features of complex (bio)chemical networks. Proc. Natl. Acad. Sci., 104(49), 19175–19180.

    Article  Google Scholar 

  • Conradi, C., Flockerzi, D., & Raisch, J. (2007b). Saddle-node bifurcations in biochemical reaction networks with mass action kinetics and application to a double-phosphorylation mechanism. In 2007 American control conference, New York City, USA, July 11–13, 2007 (pp. 6103–6109).

    Chapter  Google Scholar 

  • Craciun, G., Tang, Y., & Feinberg, M. (2006). Understanding bistability in complex enzyme-driven reaction networks. Proc. Natl. Acad. Sci., 103(23), 8697–8702.

    MATH  Article  Google Scholar 

  • del Rio, G., Koschützki, D., & Coello, G. (2009). How to identify essential genes from molecular networks? BMC Syst. Biol., 3(102).

  • Ellison, P., & Feinberg, M. (2000). How catalytic mechanisms reveal themselves in multiple steady-state data: I. Basic principles. J. Mol. Catal. A, Chem., 154, 155–167.

    Article  Google Scholar 

  • Errede, B., Cade, R. M., Yashar, B. M., Kamada, Y., Levin, D. E., Irie, K., & Matsumoto, K. (1995). Dynamics and organization of map kinase signal pathways. Mol. Reprod. Dev., 42, 477–485.

    Article  Google Scholar 

  • Feinberg, M., & Ellison, P. (2000). The chemical reaction network toolbox. www.chbmeng.ohio-state.edu/~feinberg/crnt, version 1.1a. Accessed October 2007.

  • Fell, D. A. (1992). Metabolic control analysis: a survey of its theoretical and experimental development. Biochem. J., 286, 313–330.

    Google Scholar 

  • Ferell, J. E. Jr., & Macheleder, E. M. (1998). The biochemical basis of an all-or-none cell fate switch in xenopus oocytes. Science, 280, 895–989.

    Article  Google Scholar 

  • Flach, E. H., & Schnell, S. (2006). Use and abuse of the quasi-steady-state approximation. IEE Proc. Syst. Biol., 153, 187–191.

    Google Scholar 

  • Gifi, A. (1990). Nonlinear multivariate analysis. Chichester: Wiley.

    MATH  Google Scholar 

  • Gustin, M. C., Albertyn, J., Alexander, M., & Davenport, K. (1998). Map kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev., 62, 1264–1300.

    Google Scholar 

  • Heinrich, R., & Schuster, S. (1996). The regulation of cellular systems. Berlin: Springer. Chap. 4: Time hierarchy in metabolism.

    MATH  Book  Google Scholar 

  • Ho, P.-Y., & Li, H.-Y. (2000). Determination of multiple steady states in an enzyme kinetics involving two substrates in a cstr. Bioprocess Eng., 22, 557–561.

    Article  Google Scholar 

  • Horst, P. (1961). Relations among m sets of measures. Psychometrika, 26, 129–149.

    MathSciNet  MATH  Article  Google Scholar 

  • Hundin, A., & Kaer, M. (1998). The effect of slow allosteric transitions in a simple biochemical oscillator model. J. Theor. Biol., 191, 309–322.

    Article  Google Scholar 

  • Jamshidi, N., & Palsson, B. O. (2008). Top-down analysis of temporal hierarchy in biochemical reaction networks. PLoS Comput. Biol., 4(9), e1000177.

    MathSciNet  Article  Google Scholar 

  • Jamshidi, N., & Palsson, B. O. (2010). Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. Biophys. J., 98, 175–185.

    Article  Google Scholar 

  • Kholodenko, B. N. (2006). Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol., 7, 165–176.

    Article  Google Scholar 

  • Kim, P. J., Lee, D. Y., Kim, T. Y., Lee, K. H., Jeong, H., Lee, S. Y., & Park, S. (2007). Metabolite essentiality elucidates robustness of Escherichia coli metabolism. Proc. Natl. Acad. Sci. USA, 104, 13638–13642.

    Article  Google Scholar 

  • Kim, T. Y., Kim, H. U., & Lee, S. Y. (2009). Metabolite-centric approaches for the discovery of antibacterials using genome-scale metabolic networks. Metab. Eng.

  • Koseska, A., Ullner, E., Volkov, E., Kurths, J., & García-Ojalvo, J. (2010). Cooperative differentiation through clustering in multicellular population. J. Theor. Biol., 263, 189–202.

    Article  Google Scholar 

  • Leitold, A., Hangos, K. M., & Tuza, Zs. (2002). Structure simplification of dynamic process models. J. Process Control, 12, 69–83.

    Article  Google Scholar 

  • Lewis, T. S., Shapiro, P. S., & Ahn, N. G. (1998). Signal transduction through map kinase cascades. Adv. Cancer Res., 74, 49–139.

    Article  Google Scholar 

  • Li, H. Y. (1998). The determination of multiple steady states in circular reaction networks involving heterogeneous catalysis isothermal cfstrs. Chem. Eng. Sci., 53, 3703–3710.

    Article  Google Scholar 

  • Liao, J. R., & Lightfoot, E. N. Jr. (1987). Extending the quasi-steady state concept to analysis of metabolic networks. J. Theor. Biol., 126, 253–273.

    Article  Google Scholar 

  • Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. New York: Academic Press.

    MATH  Google Scholar 

  • Markevich, N. I., Hoek, J. B., & Kholodenko, B. N. (2004). Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol., 164(3), 353–359.

    Article  Google Scholar 

  • Mendenhall, M. D., & Hodge, A. E. (1998). Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev., 62, 1191–1243.

    Google Scholar 

  • Motter, A. E., Gulbahce, N., Almaas, E., & Barabasi, A. L. (2008). Predicting synthetic rescues in metabolic networks. Mol. Syst. Biol., 4, 168.

    Article  Google Scholar 

  • Okino, M. S., & Mavrovouniotis, M. L. (1998). Simplification of mathematical models of chemical reaction systems. Chem. Rev., 98, 391–408.

    Article  Google Scholar 

  • Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I., & van Oudenaanrdern, A. (2004). Multistability in the lactose utilization network of Escherichia coli. Nature, 427, 737–740.

    Article  Google Scholar 

  • Palsson, B. O., Palsson, H., & Lightfoot, E. N. (1984). Mathematical modeling of dynamics and control in metabolic networks: II. Simple dimeric enzymes. J. Theor. Biol., 303–321.

  • Palsson, B. O., Palsson, H., & Lightfoot, E. N. (1985). Mathematical modeling of dynamics and control in metabolic networks: III. Linear reaction sequences. J. Theor. Biol., 231–259.

  • Pearson, G., Robinson, F., Gibson, T. B., Xu, B.-E., Karandikar, M., Berman, K., & Cobb, M. H. (2001). Mitogen-activated protein (map) kinase pathways: regulation and physiological functions. Endocr. Rev., 22, 153–183.

    Article  Google Scholar 

  • Peter, I. S., & Davidson, E. H. (2011). A gene regulatory network controlling the embryonic specification of endoderm. Nature, 474, 635–639.

    Article  Google Scholar 

  • Pharkya, P., & Maranas, C. D. (2006). An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab. Eng., 8, 1–13.

    Article  Google Scholar 

  • Pomerening, J. R., Sontag, E. D., & Ferell, J. R. Jr. (2003). Building a cell-cycle oscillator: hysteresis and bistability in the activation of cdc2. Nat. Cell Biol., 5, 346–351.

    Article  Google Scholar 

  • Reich, J. G., & Selkov, E. (1975). Time hierarchy, equilibrium and non-equilibrium in metabolic systems. Biosystems, 7, 39–50.

    Article  Google Scholar 

  • Schneider, K. R., & Wilhelm, T. (2000). Model reduction by extended quasi-steady-state approximation. J. Math. Biol., 40, 443–450.

    MathSciNet  MATH  Article  Google Scholar 

  • Segel, L. A. (1988). On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol., 50, 579–593.

    MathSciNet  MATH  Google Scholar 

  • Segel, L. A., & Slemrod, M. (1989). The quasi-steady-state assumption: a case study in perturbation. SIAM Rev., 31, 446–477.

    MathSciNet  MATH  Article  Google Scholar 

  • Soule, C. (2003). Graphic requirements for multistationarity. Complexus, 1, 123–133.

    Article  Google Scholar 

  • Steuer, R., Gross, T., Selbig, J., & Blasius, B. (2006). Structural kinetic modeling of metabolic networks. Proc. Natl. Acad. Sci., 103(32), 11868–11873.

    Article  Google Scholar 

  • Surovtsova, I., Simus, N., Huebner, K., Sahle, S., & Kummer, U. (2012). Simplification of biochemical models: a general approach based on the analysis of the impact of individual species and reactions on the systems dynamics. BMC Syst. Biol., 6(14).

  • Suzuki, N., Furusawa, C., & Kaneko, K. (2011). Oscillatory protein expression dynamics endows stem cell with robust differentiation potential. PLoS ONE, 6, e27232.

    Article  Google Scholar 

  • Thomson, M., & Gunawardena, J. (2009). Unlimited multistability in multisite phosphorylation systems. Nature, 460, 274–277.

    Article  Google Scholar 

  • Yamada, T., & Bork, P. (2009). Evolution of biomolecular networks—lessons from metabolic and protein interactions. Nat. Rev. Mol. Cell Biol., 10(11), 791–803.

    Article  Google Scholar 

Download references

Acknowledgements

A.Z., Z.N., and A.K. are financially supported by the GoFORSYS Project No. 0313924 funded by the German Federal Ministry of Science and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zakharova.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 186 kB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zakharova, A., Nikoloski, Z. & Koseska, A. Dimensionality Reduction of Bistable Biological Systems. Bull Math Biol 75, 373–392 (2013). https://doi.org/10.1007/s11538-013-9807-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9807-8

Keywords

  • Bistability
  • Time-scales hierarchy
  • Similarity transformation
  • Canonical correlation analysis
  • Dimensionality reduction