Anderson, J., Chang, Y.-C., & Papachristodoulou, A. (2011). Model decomposition and reduction tools for large-scale networks in systems biology. Automatica, 47, 1165–1174.
MathSciNet
MATH
Article
Google Scholar
Blauwkamp, T. A., & Ninfa, A. J. (2002). Physiological role of the glnk signal transduction protein of Escherichia coli: survival of nitrogen starvation. Mol. Microbiol., 46, 203–214.
Article
Google Scholar
Burgard, A. P., Pharkya, P., & Maranas, C. D. (2003). Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng., 84(6), 647–657.
Article
Google Scholar
Calzolari, D., Paternostro, G., Patrick, L., Harrington, Jr., Piermarocchi, C., & Duxbury, P. M. (2007). Selective control of the apoptosis signaling network in heterogeneous cell populations. PLoS ONE, 2(6), e547.
Article
Google Scholar
Chung, B. K. S., & Lee, D. Y. (2009). Flux-sum analysis: a metabolite-centric approach for understanding the metabolic network. BMC Syst. Biol., 3, 117.
MathSciNet
Article
Google Scholar
Ciliberto, A., Capuani, F., & Tyson, J. J. (2007). Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation. PLoS Comput. Biol., 3(3), e45.
MathSciNet
Article
Google Scholar
Conradi, C., Saez-Rodriguez, J., Gilles, E.-D., & Raisch, J. (2005). Using chemical reaction network theory to discard a kinetic mechanism hypothesis. In IEE proc. systems biology, December 2005 (Vol. 152, pp. 243–248).
Google Scholar
Conradi, C., Saez-Rodriguez, J., Gilles, E.-D., & Raisch, J. (2006). Chemical reaction network theory: a tool for systems biology. In Proceedings of the 5th MATHMOD, 2006.
Google Scholar
Conradi, C., Flockerzi, D., Raisch, J., & Stelling, J. (2007a). Subnetwork analysis reveals dynamic features of complex (bio)chemical networks. Proc. Natl. Acad. Sci., 104(49), 19175–19180.
Article
Google Scholar
Conradi, C., Flockerzi, D., & Raisch, J. (2007b). Saddle-node bifurcations in biochemical reaction networks with mass action kinetics and application to a double-phosphorylation mechanism. In 2007 American control conference, New York City, USA, July 11–13, 2007 (pp. 6103–6109).
Chapter
Google Scholar
Craciun, G., Tang, Y., & Feinberg, M. (2006). Understanding bistability in complex enzyme-driven reaction networks. Proc. Natl. Acad. Sci., 103(23), 8697–8702.
MATH
Article
Google Scholar
del Rio, G., Koschützki, D., & Coello, G. (2009). How to identify essential genes from molecular networks? BMC Syst. Biol., 3(102).
Ellison, P., & Feinberg, M. (2000). How catalytic mechanisms reveal themselves in multiple steady-state data: I. Basic principles. J. Mol. Catal. A, Chem., 154, 155–167.
Article
Google Scholar
Errede, B., Cade, R. M., Yashar, B. M., Kamada, Y., Levin, D. E., Irie, K., & Matsumoto, K. (1995). Dynamics and organization of map kinase signal pathways. Mol. Reprod. Dev., 42, 477–485.
Article
Google Scholar
Feinberg, M., & Ellison, P. (2000). The chemical reaction network toolbox. www.chbmeng.ohio-state.edu/~feinberg/crnt, version 1.1a. Accessed October 2007.
Fell, D. A. (1992). Metabolic control analysis: a survey of its theoretical and experimental development. Biochem. J., 286, 313–330.
Google Scholar
Ferell, J. E. Jr., & Macheleder, E. M. (1998). The biochemical basis of an all-or-none cell fate switch in xenopus oocytes. Science, 280, 895–989.
Article
Google Scholar
Flach, E. H., & Schnell, S. (2006). Use and abuse of the quasi-steady-state approximation. IEE Proc. Syst. Biol., 153, 187–191.
Google Scholar
Gifi, A. (1990). Nonlinear multivariate analysis. Chichester: Wiley.
MATH
Google Scholar
Gustin, M. C., Albertyn, J., Alexander, M., & Davenport, K. (1998). Map kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev., 62, 1264–1300.
Google Scholar
Heinrich, R., & Schuster, S. (1996). The regulation of cellular systems. Berlin: Springer. Chap. 4: Time hierarchy in metabolism.
MATH
Book
Google Scholar
Ho, P.-Y., & Li, H.-Y. (2000). Determination of multiple steady states in an enzyme kinetics involving two substrates in a cstr. Bioprocess Eng., 22, 557–561.
Article
Google Scholar
Horst, P. (1961). Relations among m sets of measures. Psychometrika, 26, 129–149.
MathSciNet
MATH
Article
Google Scholar
Hundin, A., & Kaer, M. (1998). The effect of slow allosteric transitions in a simple biochemical oscillator model. J. Theor. Biol., 191, 309–322.
Article
Google Scholar
Jamshidi, N., & Palsson, B. O. (2008). Top-down analysis of temporal hierarchy in biochemical reaction networks. PLoS Comput. Biol., 4(9), e1000177.
MathSciNet
Article
Google Scholar
Jamshidi, N., & Palsson, B. O. (2010). Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. Biophys. J., 98, 175–185.
Article
Google Scholar
Kholodenko, B. N. (2006). Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol., 7, 165–176.
Article
Google Scholar
Kim, P. J., Lee, D. Y., Kim, T. Y., Lee, K. H., Jeong, H., Lee, S. Y., & Park, S. (2007). Metabolite essentiality elucidates robustness of Escherichia coli metabolism. Proc. Natl. Acad. Sci. USA, 104, 13638–13642.
Article
Google Scholar
Kim, T. Y., Kim, H. U., & Lee, S. Y. (2009). Metabolite-centric approaches for the discovery of antibacterials using genome-scale metabolic networks. Metab. Eng.
Koseska, A., Ullner, E., Volkov, E., Kurths, J., & García-Ojalvo, J. (2010). Cooperative differentiation through clustering in multicellular population. J. Theor. Biol., 263, 189–202.
Article
Google Scholar
Leitold, A., Hangos, K. M., & Tuza, Zs. (2002). Structure simplification of dynamic process models. J. Process Control, 12, 69–83.
Article
Google Scholar
Lewis, T. S., Shapiro, P. S., & Ahn, N. G. (1998). Signal transduction through map kinase cascades. Adv. Cancer Res., 74, 49–139.
Article
Google Scholar
Li, H. Y. (1998). The determination of multiple steady states in circular reaction networks involving heterogeneous catalysis isothermal cfstrs. Chem. Eng. Sci., 53, 3703–3710.
Article
Google Scholar
Liao, J. R., & Lightfoot, E. N. Jr. (1987). Extending the quasi-steady state concept to analysis of metabolic networks. J. Theor. Biol., 126, 253–273.
Article
Google Scholar
Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. New York: Academic Press.
MATH
Google Scholar
Markevich, N. I., Hoek, J. B., & Kholodenko, B. N. (2004). Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol., 164(3), 353–359.
Article
Google Scholar
Mendenhall, M. D., & Hodge, A. E. (1998). Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev., 62, 1191–1243.
Google Scholar
Motter, A. E., Gulbahce, N., Almaas, E., & Barabasi, A. L. (2008). Predicting synthetic rescues in metabolic networks. Mol. Syst. Biol., 4, 168.
Article
Google Scholar
Okino, M. S., & Mavrovouniotis, M. L. (1998). Simplification of mathematical models of chemical reaction systems. Chem. Rev., 98, 391–408.
Article
Google Scholar
Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I., & van Oudenaanrdern, A. (2004). Multistability in the lactose utilization network of Escherichia coli. Nature, 427, 737–740.
Article
Google Scholar
Palsson, B. O., Palsson, H., & Lightfoot, E. N. (1984). Mathematical modeling of dynamics and control in metabolic networks: II. Simple dimeric enzymes. J. Theor. Biol., 303–321.
Palsson, B. O., Palsson, H., & Lightfoot, E. N. (1985). Mathematical modeling of dynamics and control in metabolic networks: III. Linear reaction sequences. J. Theor. Biol., 231–259.
Pearson, G., Robinson, F., Gibson, T. B., Xu, B.-E., Karandikar, M., Berman, K., & Cobb, M. H. (2001). Mitogen-activated protein (map) kinase pathways: regulation and physiological functions. Endocr. Rev., 22, 153–183.
Article
Google Scholar
Peter, I. S., & Davidson, E. H. (2011). A gene regulatory network controlling the embryonic specification of endoderm. Nature, 474, 635–639.
Article
Google Scholar
Pharkya, P., & Maranas, C. D. (2006). An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab. Eng., 8, 1–13.
Article
Google Scholar
Pomerening, J. R., Sontag, E. D., & Ferell, J. R. Jr. (2003). Building a cell-cycle oscillator: hysteresis and bistability in the activation of cdc2. Nat. Cell Biol., 5, 346–351.
Article
Google Scholar
Reich, J. G., & Selkov, E. (1975). Time hierarchy, equilibrium and non-equilibrium in metabolic systems. Biosystems, 7, 39–50.
Article
Google Scholar
Schneider, K. R., & Wilhelm, T. (2000). Model reduction by extended quasi-steady-state approximation. J. Math. Biol., 40, 443–450.
MathSciNet
MATH
Article
Google Scholar
Segel, L. A. (1988). On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol., 50, 579–593.
MathSciNet
MATH
Google Scholar
Segel, L. A., & Slemrod, M. (1989). The quasi-steady-state assumption: a case study in perturbation. SIAM Rev., 31, 446–477.
MathSciNet
MATH
Article
Google Scholar
Soule, C. (2003). Graphic requirements for multistationarity. Complexus, 1, 123–133.
Article
Google Scholar
Steuer, R., Gross, T., Selbig, J., & Blasius, B. (2006). Structural kinetic modeling of metabolic networks. Proc. Natl. Acad. Sci., 103(32), 11868–11873.
Article
Google Scholar
Surovtsova, I., Simus, N., Huebner, K., Sahle, S., & Kummer, U. (2012). Simplification of biochemical models: a general approach based on the analysis of the impact of individual species and reactions on the systems dynamics. BMC Syst. Biol., 6(14).
Suzuki, N., Furusawa, C., & Kaneko, K. (2011). Oscillatory protein expression dynamics endows stem cell with robust differentiation potential. PLoS ONE, 6, e27232.
Article
Google Scholar
Thomson, M., & Gunawardena, J. (2009). Unlimited multistability in multisite phosphorylation systems. Nature, 460, 274–277.
Article
Google Scholar
Yamada, T., & Bork, P. (2009). Evolution of biomolecular networks—lessons from metabolic and protein interactions. Nat. Rev. Mol. Cell Biol., 10(11), 791–803.
Article
Google Scholar