Skip to main content
Log in

Numerical Simulation of the Inhibitory Effect of Angiostatin on Metastatic Tumor Angiogenesis and Microenvironment

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The present work formulates and analyzes the inhibitory effect of anti-angiogenic factor angiostatin excreted by the primary tumor on metastatic tumor angiogenesis, blood perfusion, and interstitial fluid flow in the tumor microenvironment by means of a numerical experiment. The simulation results demonstrate that angiostatin has an obvious impact on the morphology, growth rate, and the number of branches of microvascular network inside and outside the metastatic tumor, and angiostatin has the capacity to regulate and inhibit the formation of new blood vessels. Heterogeneous blood perfusion, widespread interstitial hypertension, and low convection within the metastatic tumor have obviously improved under the inhibitory effect of angiostatin, which are consistent with physiological observed facts. The simulation results may provide beneficial information and theoretical models for clinical research of anti-angiogenic therapy strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alarcón, T., Owen, M. R., Byrne, H. M., & Maini, P. K. (2006). Multiscale modelling of tumour growth and therapy: the influence of vessel normalisation on chemotherapy. Comput. Math. Methods Med., 7(2–3), 85–119.

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, A. R. A., & Chaplain, M. A. J. (1998). Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol., 60, 857–900.

    Article  MATH  Google Scholar 

  • Anderson, A. R. A., & Chaplain, M. A. J. (2000). A gradient-driven mathematical model of antiangiogenesis. Math. Comput. Model., 32, 1141–1152.

    Article  MathSciNet  MATH  Google Scholar 

  • Aubert, M., Chaplain, M. A. J., McDougall, S. R., Devlin, A., & Mitchell, C. A. (2011). A continuum mathematical model of the developing murine retinal vasculature. Bull. Math. Biol. doi:10.1007/s11538-011-9631-y.

    MathSciNet  Google Scholar 

  • Baxter, L. T., & Jain, R. K. (1989). Transport of fluid and macromolecules in tumors I. Role of interstitial pressure and convection. Microvasc. Res., 37, 77–104.

    Article  Google Scholar 

  • Cai, Y., Wu, J., Gulnan, K., Zhang, H., Cao, J., Xu, S., Long, Q., & Collons, M.W. (2009). Numerical simulation of solid tumor angiogenesis with Endostatin treatment: a combined analysis of inhibiting effect of anti-angiogenic factor and micro mechanical environment of extracellular matrix. Appl. Math. Mech., 30(10), 1247–1254.

    Article  MathSciNet  MATH  Google Scholar 

  • Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. N. Engl. J. Med., 285(10), 1182–1186.

    Google Scholar 

  • Fukumura, D., & Jain, R. K. (2007). Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc. Res., 74, 72–84.

    Article  Google Scholar 

  • Jain, R. K., Tong, R. T., & Munn, L. L. (2007). Effect of vascular normalization by antiangiogenic therapy on inerstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res., 67(6), 2729–2735.

    Article  Google Scholar 

  • Konjevic, G., & Stankovic, S. (2006). Matrix metalloproteinases in the process of invasion and metastasis of breast cancer. Arch. Oncol., 14(3–4), 136–140.

    Article  Google Scholar 

  • Kuszyk, B. S., Corl, F. M., Franano, F. N., Bluemke, D. A., Hofmann, L. V., Fortman, B. J., & Fishman, E. K. (2001). Tumor transport physiology: Implications for imaging and imaging-guided therapy. Am. J. of Radiol., 177, 747–753.

    Google Scholar 

  • Madu, C. O., & Lu, Y. (2009). Tumor microvasculature and microenvironment: therapeutic targets for inhibition of tumor angiogenesis and metastasis. In Pharmaceutical perspectives of cancer therapeutics. New York: Springer.

    Google Scholar 

  • Maggelakis, S. A. (1996). The effects of tumor angiogenesis factor (TAF) and tumor inhibitor factors (TIFs) on tumor vascularization: a mathematical model. Math. Comput. Model., 23(6), 121–133.

    Article  MathSciNet  MATH  Google Scholar 

  • McDougall, S. R., Anderson, A. R. A., Chaplain, M. A. J., & Sherratt, J. A. (2002). Mathematical modeling of flow through vascular network: implications for tumor-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol., 64, 673–702.

    Article  Google Scholar 

  • O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., Lane, W. S., Cao, Y. H., Sage, E. H., & Folkman, J. (1994). Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell., 79(2), 315–328.

    Article  Google Scholar 

  • Sim, B. K. L., O’Reilly, M. S., Liang, H., Fortier, A. H., He, W., Madsen, J. W., Lapcevich, R., & Nacy, C. A. (1997). A recombinant human angiostatin protein inhibits experimental primary and metastatic cancer. Cancer Res., 57, 1329–1334.

    Google Scholar 

  • Soff, G. A. (2000). Angiostatin and angiostatin-related proteins. Cancer Metastasis Rev., 19, 97–107.

    Article  Google Scholar 

  • Stephanou, A., McDougall, S. R., Anderson, A. R. A., & Chaplain, M. A. J. (2005). Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math. Comput. Model., 41, 1137–1156.

    Article  MathSciNet  MATH  Google Scholar 

  • Tao, K. S., Dou, K. F., & Wu, X. A. (2004). Expression of angiostatin cDNA in human hepatocellular carcinoma cell line SMMC-7721 and its effect on implanted carcinoma in nude mice. World J. Gastroenterol, 10, 1421–1424.

    Google Scholar 

  • Tee, D., & DiStefano, J. (2004). Simulation of tumor-induced angiogenesis and its response to anti-angiogenic drug treatment: mode of drug delivery and clearance rate dependencies. J. Cancer Res. Clin. Oncol., 130, 15–24.

    Article  Google Scholar 

  • Wu, J., Ding, Z., Cai, Y., Xu, S., Zhao, G., & Quan, L. (2011). Simulation of tumor microvasculature and microenvironment response to anti-angiogenic treatment by angiostatin and endostatin. Appl. Math. Mech., 32(4), 437–448.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, G., Gao, H., Wu, J., Xu, S., Collons, M. W., Long, Q., Carola, K., & Padhani, A. R. (2006). 2D numerical simulation of effect of antiangiogenic factors Angiostatin and Endostatin on tumor-induced angiogenesis. J. Med. Biomech., 21(4), 272–279.

    Google Scholar 

  • Zheng, X., Wise, S. M., & Cristini, V. (2005). Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Biol., 67, 211–259.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research has been supported by a grant provided by the National Natural Science Foundation of China (51106099), Innovation Program of Shanghai Municipal Education Commission (12YZ109) and National Natural Science Foundation of China Cultivate project (12XGQ04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaiping Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, G., Yan, W., Chen, E. et al. Numerical Simulation of the Inhibitory Effect of Angiostatin on Metastatic Tumor Angiogenesis and Microenvironment. Bull Math Biol 75, 274–287 (2013). https://doi.org/10.1007/s11538-012-9805-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9805-2

Keywords

Navigation