Bulletin of Mathematical Biology

, Volume 75, Issue 2, pp 258–273 | Cite as

Fatal or Harmless: Extreme Bistability Induced by Sterilizing, Sexually Transmitted Pathogens

Original Article

Abstract

Models of sexually transmitted infections have become a fixture of mathematical epidemiology. A common attribute of all these models is treating reproduction and mating, and hence pathogen transmission, as uncoupled events. This is fine for humans, for example, where only a tiny fraction of sexual intercourses ends up with having a baby. But it can be a deficiency for animals in which mating and giving birth are tightly coupled, and mating thus mediates both reproduction and pathogen transmission. Here, we model dynamics of sterilizing, sexually transmitted infections in such animals, assuming structural consistency between the processes of reproduction and pathogen transmission. We show that highly sterilizing, sexually transmitted pathogens trigger bistability in the host population. In particular, the host population can end up in two extreme alternative states, disease-free persistence and pathogen-driven extinction, depending on its initial state. Given that sterilizing, sexually transmitted infections that affect animals are abundant, our results might implicate an effective pest control tactic that consists of releasing the corresponding pathogens, possibly after genetically enhancing their sterilization power.

Keywords

Disease transmission Mating Population dynamics Population management Sexually transmitted disease 

References

  1. Anderson, R. M., & May, R. M. (1979). Population biology of infectious diseases. I. Nature, 280, 361–367. CrossRefGoogle Scholar
  2. Berec, L., Angulo, E., & Courchamp, F. (2007). Multiple Allee effects and population management. Trends Ecol. Evol., 22, 185–191. CrossRefGoogle Scholar
  3. Bessa-Gomes, C., Legendre, S., & Clobert, J. (2004). Allee effects, mating systems and the extinction risk in populations with two sexes. Ecol. Lett., 7, 802–812. CrossRefGoogle Scholar
  4. Busenberg, S., & van den Driessche, P. (1990). Analysis of a disease transmission model in a population with varying size. J. Math. Biol., 28, 257–270. MathSciNetCrossRefMATHGoogle Scholar
  5. Castillo-Chavez, C., & Huang, W. (1995). The logistic equation revisited: the two-sex case. Math. Biosci., 128, 299–316. CrossRefMATHGoogle Scholar
  6. Caswell, H., & Weeks, D. E. (1986). Two-sex models: chaos, extinction, and other dynamic consequences of sex. Am. Nat., 128, 707–735. CrossRefGoogle Scholar
  7. Courchamp, F., Berec, L., & Gascoigne, J. (2008). Allee effects in ecology and conservation. Oxford: Oxford Univ. Press. CrossRefGoogle Scholar
  8. Dieckmann, U. (2002). Adaptive dynamics of pathogen-host interactions. In U. Dieckmann, J. A. J. Metz, M. W. Sabelis, & K. Sigmund (Eds.), Adaptive dynamics of infectious diseases (pp. 39–59). Cambridge: Cambridge Univ. Press. CrossRefGoogle Scholar
  9. Diekmann, O., & Kretzschmar, M. (1991). Patterns in the effects of infectious diseases on population growth. J. Math. Biol., 29, 539–570. MathSciNetCrossRefMATHGoogle Scholar
  10. Gao, L. Q., & Hethcote, H. W. (1992). Disease transmission models with density-dependent demographics. J. Math. Biol., 30, 717–731. MathSciNetCrossRefMATHGoogle Scholar
  11. Gascoigne, J., Berec, L., Gregory, S., & Courchamp, F. (2009). Dangerously few liaisons: a review of mate-finding Allee effects. Popul. Ecol., 51, 355–372. CrossRefGoogle Scholar
  12. Getz, W. M., & Pickering, J. (1983). Epidemic models: thresholds and population regulation. Am. Nat., 121, 892–898. CrossRefGoogle Scholar
  13. Hadeler, K. P., Waldstätter, R., & Wörz-Busekros, A. (1988). Models for pair formation in bisexual populations. J. Math. Biol., 26, 635–649. MathSciNetCrossRefMATHGoogle Scholar
  14. Hardy, C. M., Hinds, L. A., Kerr, P. J., Lloyd, M. L., Redwood, A. J., Shellam, G. R., & Strive, T. (2006). Biological control of vertebrate pests using virally vectored immunocontraception. J. Reprod. Immunol., 71, 102–111. CrossRefGoogle Scholar
  15. Hilker, F. M. (2010). Population collapse to extinction: the catastrophic combination of parasitism and Allee effect. Journal of Biological Dynamics, 4, 86–101. MathSciNetCrossRefGoogle Scholar
  16. Hilker, F. M., Langlais, M., & Malchow, H. (2009). The Allee effect and infectious diseases: extinction, multistability, and the (dis-)appearance of oscillations. Am. Nat., 173, 72–88. CrossRefGoogle Scholar
  17. Iannelli, M., Martcheva, M., & Milner, F. A. (2005). Gender-structured population modeling. Philadelphia: SIAM. CrossRefMATHGoogle Scholar
  18. Jaenike, A. (1996). Suboptimal virulence of an insect-parasitic nematode. Evolution, 50, 2241–2247. CrossRefGoogle Scholar
  19. Knell, R. J., & Webberley, K. M. (2004). Sexually transmitted diseases of insects: distribution, evolution, ecology and host behaviour. Biol. Rev., 79, 557–581. CrossRefGoogle Scholar
  20. Kokko, H., & Morrell, L. J. (2005). Mate guarding, male attractiveness, and paternity under social monogamy. Behav. Ecol., 16, 724–731. CrossRefGoogle Scholar
  21. Kramer, A. M., Dennis, B., Liebhold, A. M., & Drake, J. M. (2009). The evidence for Allee effects. Popul. Ecol., 51, 341–354. CrossRefGoogle Scholar
  22. Lindström, J., & Kokko, H. (1998). Sexual reproduction and population dynamics: the role of polygyny and demographic sex differences. Proc. R. Soc. Lond. B, 265, 483–488. CrossRefGoogle Scholar
  23. Little, S. (2001). Reproduction and breeding management in cats. Vet. Med., 96, 549–555. MathSciNetGoogle Scholar
  24. Lockhart, A. B., Thrall, P. H., & Antonovics, J. (1996). Sexually transmitted diseases in animals: ecological and evolutionary implications. Biol. Rev., 71, 415–471. CrossRefGoogle Scholar
  25. McCallum, H., Barlow, N., & Hone, J. (2001). How should pathogen transmission be modelled? Trends Ecol. Evol., 16, 295–300. CrossRefGoogle Scholar
  26. Miller, T. E. X., & Inouye, B. D. (2011). Confronting two-sex demographic models with data. Ecology, 92, 2141–2151. CrossRefGoogle Scholar
  27. Møller, A. P., & Birkhead, T. R. (1992). A pairwise comparative method as illustrated by copulation frequency in birds. Am. Nat., 139, 644–656. CrossRefGoogle Scholar
  28. O’Keefe, K. J., & Antonovics, J. (2002). Playing by different rules: the evolution of virulence in sterilizing pathogens. Am. Nat., 159, 597–605. CrossRefGoogle Scholar
  29. Parvinen, K. (2005). Evolutionary suicide. Acta Biotheor., 53, 241–264. CrossRefGoogle Scholar
  30. Pugliese, A. (1990). Population models for diseases with no recovery. J. Math. Biol., 28, 65–82. MathSciNetCrossRefMATHGoogle Scholar
  31. Rankin, D. J., & Kokko, H. (2007). Do males matter? The role of males in population dynamics. Oikos, 116, 335–348. CrossRefGoogle Scholar
  32. Shuster, S. M., & Wade, M. J. (2003). Mating systems and strategies. Princeton: Princeton Univ. Press. Google Scholar
  33. Sloan, D. B., Giraud, T., & Hood, M. E. (2008). Maximized virulence in a sterilizing pathogen: the anther-smut fungus and its co-evolved hosts. J. Evol. Biol., 21, 1544–1554. CrossRefGoogle Scholar
  34. Thrall, P. H., & Antonovics, J. (1997). Polymorphism in sexual versus non-sexual disease transmission. Proc. R. Soc. Lond. B, 264, 581–587. CrossRefGoogle Scholar
  35. Tobin, P. C., Robinet, C., Johnson, D. M., Whitmire, S. L., Bjørnstad O. N., & Liebhold, A. M. (2009). The role of Allee effects in gypsy moth, Lymantria dispar (L.), invasions. Popul. Ecol., 51, 373–384. CrossRefGoogle Scholar
  36. Vynnycky, E., & White, R. G. (2010). An introduction to infectious disease modelling. Oxford: Oxford Univ. Press. Google Scholar

Copyright information

© Society for Mathematical Biology 2012

Authors and Affiliations

  1. 1.Department of Biosystematics and Ecology, Institute of EntomologyBiology Centre ASCRČeské BudějoviceCzech Republic
  2. 2.Institute of Mathematics and Biomathematics, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Department of Mathematics and Computer ScienceValparaiso UniversityValparaisoUSA

Personalised recommendations